Hybridization and optimization of machine learning techniques for improved forecasting in real-world scenarios

dc.centroEscuela de Ingenierías Industrialeses_ES
dc.contributor.authorStoean, Ruxandra
dc.date.accessioned2017-02-14T12:22:19Z
dc.date.available2017-02-14T12:22:19Z
dc.date.created2017
dc.date.issued2017-02-14
dc.departamentoMatemática Aplicada
dc.description.abstractDifferent and powerful machine learning paradigms are constantly in a race for delivering the lowest error and/or the highest comprehensibility. But what can certainly lead to better forecasting is model inter-cooperation or intra-optimization. The aim of the current talk is to put forward some recent ideas for such hybridization and optimization. Demonstrative experiments are outlined for problems coming from real, challenging environments.es_ES
dc.description.sponsorshipUniversidad de Málaga. Campus de Excelencia Internacional Andalucía Tech.es_ES
dc.identifier.orcidhttp://orcid.org/0000-0002-9849-5712es_ES
dc.identifier.urihttp://hdl.handle.net/10630/13070
dc.language.isoenges_ES
dc.relation.eventdate19/07/2017es_ES
dc.rightsby-nc-nd
dc.rights.accessRightsopen accesses_ES
dc.subjectOptimización matemáticaes_ES
dc.titleHybridization and optimization of machine learning techniques for improved forecasting in real-world scenarioses_ES
dc.typeconference outputes_ES
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ConferenceRuxandraStoean190717.pdf
Size:
23.85 KB
Format:
Adobe Portable Document Format