Local Optima Networks, Landscape Autocorrelation and Heuristic Search Performance

Loading...
Thumbnail Image

Identifiers

Publication date

Reading date

Collaborators

Advisors

Tutors

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Metrics

Google Scholar

Share

Research Projects

Organizational Units

Journal Issue

Abstract

Recent developments in fitness landscape analysis include the study of Local Optima Networks (LON) and applications of the Elementary Landscapes theory. This paper represents a first step at combining these two tools to explore their ability to forecast the performance of search algorithms. We base our analysis on the Quadratic Assignment Problem (QAP) and conduct a large statistical study over 600 generated instances of different types. Our results reveal interesting links between the network measures, the autocorrelation measures and the performance of heuristic search algorithms.

Description

Chicano, F., Daolio F., Ochoa G., Vérel S., Tomassini M., & Alba E. (2012). Local Optima Networks, Landscape Autocorrelation and Heuristic Search Performance. (Coello, C. A. Coello, Cutello V., Deb K., Forrest S., Nicosia G., & Pavone M., Ed.).Parallel Problem Solving from Nature - PPSN XII - 12th International Conference, Taormina, Italy, September 1-5, 2012, Proceedings, Part II. 337–347.

Bibliographic citation

Endorsement

Review

Supplemented By

Referenced by