CAD system for Parkinson's Disease with penalization of non-significant or high-variability input data sources.

dc.contributor.authorCastillo-Barnes, Diego
dc.contributor.authorMerino-Chica, Javier
dc.contributor.authorDíaz-García, Raúl
dc.contributor.authorJiménez-Mesa, Carmen
dc.contributor.authorArco, Juan E.
dc.contributor.authorRamírez, Javier
dc.contributor.authorGórriz-Sáez, Juan Manuel
dc.date.accessioned2024-11-18T11:39:47Z
dc.date.available2024-11-18T11:39:47Z
dc.date.created2022
dc.date.issued2022
dc.departamentoIngeniería de Comunicaciones
dc.descriptionhttps://www.springernature.com/gp/open-science/policies/book-policieses_ES
dc.description.abstractIn the last decade, the progressive development of new machine learning schemas in combination with novel biomarkers have led us to more accurate models to diagnose and predict the evolution of neurological disorders like Parkinson's Disease (PD). Though some of these previous work have attempted to combine multiple input data sources, many studies are critical of their lack of robustness when combining several input sources that with a high variability and/or not statistically significant. In order to minimize this problem, we have develop a Computer-Aided-Diagnosis (CAD) system for PD able to combine multiple input data sources underestimating those data types with poor classification rates and high variability. This model has been evaluated using FP-CIT SPECT and MRI images from healthy control subjects and patients with Parkinson's Disease. As shown by our results, the cross-validation model proposed here does not only preserves the performance of our CAD system (93.8\% of balanced accuracy) but also minimizes its variability even despite the input data sources poorly statistically significant.es_ES
dc.description.sponsorshipThis work was supported by the MCIN/AEI/10.13039/501100011033/ and FEDER "Una manera de hacer Europa" under the RTI2018-098913-B-I00 project; by the Consejería de Economía, Innovación, Ciencia y Empleo (Junta de Andalucía) and FEDER under CV20-45250, A-TIC-080-UGR18, B-TIC-586-UGR20 and P20-00525 projects; and by the Ministerio de Universidades under the FPU18/04902 grant given to C. Jimenez-Mesa and the Margarita-Salas grant to J.E. Arco.es_ES
dc.identifier.citationCastillo-Barnes, D. et al. (2022). CAD System for Parkinson’s Disease with Penalization of Non-significant or High-Variability Input Data Sources. In: Ferrández Vicente, J.M., Álvarez-Sánchez, J.R., de la Paz López, F., Adeli, H. (eds) Artificial Intelligence in Neuroscience: Affective Analysis and Health Applications. IWINAC 2022. Lecture Notes in Computer Science, vol 13258. Springer, Cham. https://doi.org/10.1007/978-3-031-06242-1_3es_ES
dc.identifier.urihttps://hdl.handle.net/10630/35190
dc.language.isoenges_ES
dc.publisherSpringer Naturees_ES
dc.relation.eventdateMay 2022es_ES
dc.relation.eventplaceTenerife, Spaines_ES
dc.relation.eventtitle9th International Work-conference on the Interplay between Natural and Artificial Computationes_ES
dc.rights.accessRightsopen accesses_ES
dc.subjectCerebro - Imágeneses_ES
dc.subjectParkinson, Enfermedad de - Imágeneses_ES
dc.subjectDiagnóstico por imagenes_ES
dc.subjectSistemas de imágenes en medicinaes_ES
dc.subject.otherMachine learninges_ES
dc.subject.otherEnsemble learninges_ES
dc.subject.otherNeuroimaginges_ES
dc.subject.otherParkinson's diseasees_ES
dc.subject.otherMultimodal analysises_ES
dc.subject.otherComputer-Aided-Diagnosises_ES
dc.titleCAD system for Parkinson's Disease with penalization of non-significant or high-variability input data sources.es_ES
dc.typeconference outputes_ES
dc.type.hasVersionSMUR
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
samplepaper.pdf
Size:
581.37 KB
Format:
Adobe Portable Document Format
Description:
Preprint
Download

Description: Preprint