CAD system for Parkinson's Disease with penalization of non-significant or high-variability input data sources.
| dc.contributor.author | Castillo-Barnes, Diego | |
| dc.contributor.author | Merino-Chica, Javier | |
| dc.contributor.author | Díaz-García, Raúl | |
| dc.contributor.author | Jiménez-Mesa, Carmen | |
| dc.contributor.author | Arco, Juan E. | |
| dc.contributor.author | Ramírez, Javier | |
| dc.contributor.author | Górriz-Sáez, Juan Manuel | |
| dc.date.accessioned | 2024-11-18T11:39:47Z | |
| dc.date.available | 2024-11-18T11:39:47Z | |
| dc.date.created | 2022 | |
| dc.date.issued | 2022 | |
| dc.departamento | Ingeniería de Comunicaciones | |
| dc.description | https://www.springernature.com/gp/open-science/policies/book-policies | es_ES |
| dc.description.abstract | In the last decade, the progressive development of new machine learning schemas in combination with novel biomarkers have led us to more accurate models to diagnose and predict the evolution of neurological disorders like Parkinson's Disease (PD). Though some of these previous work have attempted to combine multiple input data sources, many studies are critical of their lack of robustness when combining several input sources that with a high variability and/or not statistically significant. In order to minimize this problem, we have develop a Computer-Aided-Diagnosis (CAD) system for PD able to combine multiple input data sources underestimating those data types with poor classification rates and high variability. This model has been evaluated using FP-CIT SPECT and MRI images from healthy control subjects and patients with Parkinson's Disease. As shown by our results, the cross-validation model proposed here does not only preserves the performance of our CAD system (93.8\% of balanced accuracy) but also minimizes its variability even despite the input data sources poorly statistically significant. | es_ES |
| dc.description.sponsorship | This work was supported by the MCIN/AEI/10.13039/501100011033/ and FEDER "Una manera de hacer Europa" under the RTI2018-098913-B-I00 project; by the Consejería de Economía, Innovación, Ciencia y Empleo (Junta de Andalucía) and FEDER under CV20-45250, A-TIC-080-UGR18, B-TIC-586-UGR20 and P20-00525 projects; and by the Ministerio de Universidades under the FPU18/04902 grant given to C. Jimenez-Mesa and the Margarita-Salas grant to J.E. Arco. | es_ES |
| dc.identifier.citation | Castillo-Barnes, D. et al. (2022). CAD System for Parkinson’s Disease with Penalization of Non-significant or High-Variability Input Data Sources. In: Ferrández Vicente, J.M., Álvarez-Sánchez, J.R., de la Paz López, F., Adeli, H. (eds) Artificial Intelligence in Neuroscience: Affective Analysis and Health Applications. IWINAC 2022. Lecture Notes in Computer Science, vol 13258. Springer, Cham. https://doi.org/10.1007/978-3-031-06242-1_3 | es_ES |
| dc.identifier.uri | https://hdl.handle.net/10630/35190 | |
| dc.language.iso | eng | es_ES |
| dc.publisher | Springer Nature | es_ES |
| dc.relation.eventdate | May 2022 | es_ES |
| dc.relation.eventplace | Tenerife, Spain | es_ES |
| dc.relation.eventtitle | 9th International Work-conference on the Interplay between Natural and Artificial Computation | es_ES |
| dc.rights.accessRights | open access | es_ES |
| dc.subject | Cerebro - Imágenes | es_ES |
| dc.subject | Parkinson, Enfermedad de - Imágenes | es_ES |
| dc.subject | Diagnóstico por imagen | es_ES |
| dc.subject | Sistemas de imágenes en medicina | es_ES |
| dc.subject.other | Machine learning | es_ES |
| dc.subject.other | Ensemble learning | es_ES |
| dc.subject.other | Neuroimaging | es_ES |
| dc.subject.other | Parkinson's disease | es_ES |
| dc.subject.other | Multimodal analysis | es_ES |
| dc.subject.other | Computer-Aided-Diagnosis | es_ES |
| dc.title | CAD system for Parkinson's Disease with penalization of non-significant or high-variability input data sources. | es_ES |
| dc.type | conference output | es_ES |
| dc.type.hasVersion | SMUR | |
| dspace.entity.type | Publication |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- samplepaper.pdf
- Size:
- 581.37 KB
- Format:
- Adobe Portable Document Format
- Description:
- Preprint
Description: Preprint

