Reduction of the size of datasets by using evolutionary feature selection: the case of noise in a modern city

dc.centroE.T.S.I. Informáticaen_US
dc.contributor.authorLuque, Javier
dc.contributor.authorToutouh-el-Alamin, Jamal
dc.contributor.authorAlba-Torres, Enrique
dc.date.accessioned2018-12-10T11:04:53Z
dc.date.available2018-12-10T11:04:53Z
dc.date.created2018
dc.date.issued2018-12-10
dc.departamentoLenguajes y Ciencias de la Computación
dc.description.abstractSmart city initiatives have emerged to mitigate the negative effects of a very fast growth of urban areas. Most of the population in our cities are exposed to high levels of noise that generate discomfort and different health problems. These issues may be mitigated by applying different smart cities solutions, some of them require high accurate noise information to provide the best quality of serve possible. In this study, we have designed a machine learning approach based on genetic algorithms to analyze noise data captured in the university campus. This method reduces the amount of data required to classify the noise by addressing a feature selection optimization problem. The experimental results have shown that our approach improved the accuracy in 20% (achieving an accuracy of 87% with a reduction of up to 85% on the original dataset).en_US
dc.description.sponsorshipUniversidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. This research has been partially funded by the Spanish MINECO and FEDER projects TIN2016-81766-REDT (http://cirti.es), and TIN2017-88213-R (http://6city.lcc.uma.es).en_US
dc.identifier.urihttps://hdl.handle.net/10630/17022
dc.language.isoengen_US
dc.relation.eventdate23-26 de octubre de 2018en_US
dc.relation.eventplaceGranada, Españaen_US
dc.relation.eventtitleConference of the Spanish Association for Artificial Intelligence (CAEPIA)en_US
dc.rights.accessRightsopen accessen_US
dc.subjectRuido urbanoen_US
dc.subject.otherSmart cityen_US
dc.subject.otherFeature selectionen_US
dc.subject.otherNoiseen_US
dc.subject.otherGenetic algorithmsen_US
dc.titleReduction of the size of datasets by using evolutionary feature selection: the case of noise in a modern cityen_US
dc.typeconference outputen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationa18a3827-4066-4bb2-9338-7e7510191857
relation.isAuthorOfPublicatione8596ab5-92f0-420d-a394-17d128c965da
relation.isAuthorOfPublication.latestForDiscoverya18a3827-4066-4bb2-9338-7e7510191857

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
JToutouh_CAEPIA2018.pdf
Size:
557.15 KB
Format:
Adobe Portable Document Format
Description:
Artículo (preprint)
Download

Description: Artículo (preprint)