Improving Uncertainty Estimations for Mammogram Classification using Semi-Supervised Learning

dc.centroE.T.S.I. Informáticaes_ES
dc.contributor.authorCalderón-Ramírez, Saúl
dc.contributor.authorMurillo-Hernández, Diego
dc.contributor.authorRojas-Salazar, Kevin
dc.contributor.authorCalvo-Valverde, Luis-Alexander
dc.contributor.authorYang, Shengxiang
dc.contributor.authorMoemeni, Armaghan
dc.contributor.authorElizondo Acuña, David Alberto
dc.contributor.authorLópez-Rubio, Ezequiel
dc.contributor.authorMolina-Cabello, Miguel Ángel
dc.date.accessioned2021-07-26T06:35:55Z
dc.date.available2021-07-26T06:35:55Z
dc.date.issued2021-07
dc.departamentoLenguajes y Ciencias de la Computación
dc.description.abstractComputer aided diagnosis for mammogram images have seen positive results through the usage of deep learning architectures. However, limited sample sizes for the target datasets might prevent the usage of a deep learning model under real world scenarios. The usage of unlabeled data to improve the accuracy of the model can be an approach to tackle the lack of target data. Moreover, important model attributes for the medical domain as model uncertainty might be improved through the usage of unlabeled data. Therefore, in this work we explore the impact of using unlabeled data through the implementation of a recent approach known as MixMatch, for mammogram images. We evaluate the improvement on accuracy and uncertainty of the model using popular and simple approaches to estimate uncertainty. For this aim, we propose the usage of the uncertainty balanced accuracy metric.es_ES
dc.description.sponsorshipUniversidad de Málaga. Campus de Excelencia Internacional Andalucía Tech.es_ES
dc.identifier.urihttps://hdl.handle.net/10630/22699
dc.language.isoenges_ES
dc.relation.eventdateJulio de 2021es_ES
dc.relation.eventplaceVirtuales_ES
dc.relation.eventtitleInternational Joint Conference on Neural Networks 2021 (IJCNN 2021)es_ES
dc.rights.accessRightsopen accesses_ES
dc.subjectMamas - Cáncer - Diagnósticoes_ES
dc.subject.otherUncertainty estimationes_ES
dc.subject.otherBreast canceres_ES
dc.subject.otherSemi-Supervised Deep Learninges_ES
dc.subject.otherMixMatches_ES
dc.titleImproving Uncertainty Estimations for Mammogram Classification using Semi-Supervised Learninges_ES
dc.typeconference outputes_ES
dspace.entity.typePublication
relation.isAuthorOfPublicationae409266-06a3-4cd4-84e8-fb88d4976b3f
relation.isAuthorOfPublicationbd8d08dc-ffee-4da1-9656-28204211eb1a
relation.isAuthorOfPublication.latestForDiscoveryae409266-06a3-4cd4-84e8-fb88d4976b3f

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
N-1031 Saul.pdf
Size:
960.68 KB
Format:
Adobe Portable Document Format
Description: