Is learning for the unit commitment problem a low-hanging fruit?

Loading...
Thumbnail Image

Files

1-s2.0-S0378779622000815-main.pdf (392.2 KB)

Description: artículo principal

Identifiers

Publication date

Reading date

Collaborators

Advisors

Tutors

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier

Metrics

Google Scholar

Share

Research Projects

Organizational Units

Journal Issue

Department/Institute

Abstract

The blast wave of machine learning and artificial intelligence has also reached the power systems community, and amid the frenzy of methods and black-box tools that have been left in its wake, it is sometimes difficult to perceive a glimmer of Occam’s razor principle. In this letter, we use the unit commitment problem (UCP), an NP-hard mathematical program that is fundamental to power system operations, to show that simplicity must guide any strategy to solve it, in particular those that are based on learning from past UCP instances. To this end, we apply a naive algorithm to produce candidate solutions to the UCP and show, using a variety of realistically sized power systems, that we are able to find optimal or quasi-optimal solutions with remarkable speedups. To the best of our knowledge, this is the first work in the technical literature that quantifies how challenging learning the solution of the UCP actually is for real-size power systems. Our claim is thus that any sophistication of the learning method must be backed up with a statistically significant improvement of the results in this letter.

Description

Bibliographic citation

Collections

Endorsement

Review

Supplemented By

Referenced by

Creative Commons license

Except where otherwised noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional