G2 and the rolling ball

dc.centroFacultad de Cienciases_ES
dc.contributor.authorHuerta, John
dc.date.accessioned2017-05-09T12:29:44Z
dc.date.available2017-05-09T12:29:44Z
dc.date.created2017
dc.date.issued2017-05-09
dc.departamentoÁlgebra, Geometría y Topología
dc.description.abstractUnderstanding the exceptional Lie groups as the symmetry groups of simpler objects is a long-standing program in mathematics. Here, we explore one famous realization of the smallest exceptional Lie group, G2: Its Lie algebra g2 acts locally as the symmetries of a ball rolling on a larger ball, but only when the ratio of radii is 1:3. Using the split octonions, we devise a similar, but more global, picture of G2: it acts as the symmetries of a `spinorial ball rolling on a projective plane', again when the ratio of radii is 1:3. We describe the incidence geometry of both systems, and use it to explain the mysterious 1:3 ratio in simple, geometric terms.es_ES
dc.description.sponsorshipUniversidad de Málaga. Campus de Excelencia Internacional Andalucía Tech.es_ES
dc.identifier.urihttp://hdl.handle.net/10630/13609
dc.language.isospaes_ES
dc.relation.eventdate11, May, 2017es_ES
dc.relation.eventplaceMálaga, Españaes_ES
dc.relation.eventtitleG2 and the rolling balles_ES
dc.rightsby-nc-nd
dc.rights.accessRightsopen accesses_ES
dc.subjectLie, Álgebras de, excepcionaleses_ES
dc.subject.otherRolling ballses_ES
dc.subject.otherG2es_ES
dc.titleG2 and the rolling balles_ES
dc.typeconference outputes_ES
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
G2.pdf
Size:
27.47 KB
Format:
Adobe Portable Document Format