e-LION: Data integration semantic model to enhance predictive analytics in e-Learning

Loading...
Thumbnail Image

Identifiers

Publication date

Reading date

Collaborators

Advisors

Tutors

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier

Metrics

Google Scholar

Share

Research Projects

Organizational Units

Journal Issue

Abstract

In the last years, Learning Management systems (LMSs) are acquiring great importance in online education, since they offer flexible integration platforms for organising a vast amount of learning resources, as well as for establishing effective communication channels between teachers and learners, at any direction. These online platforms are then attracting an increasing number of users that continuously access, download/upload resources and interact each other during their teaching/learning processes, which is even accelerating by the breakout of COVID-19. In this context, academic institutions are generating large volumes of learning-related data that can be analysed for supporting teachers in lesson, course or faculty degree planning, as well as administrations in university strategic level. However, managing such amount of data, usually coming from multiple heterogeneous sources and with attributes sometimes reflecting semantic inconsistencies, constitutes an emerging challenge, so they require common definition and integration schemes to easily fuse them, with the aim of efficiently feeding machine learning models. In this regard, semantic web technologies arise as a useful framework for the semantic integration of multi-source e-learning data, allowing the consolidation, linkage and advanced querying in a systematic way. With this motivation, the e-LION (e-Learning Integration ONtology) semantic model is proposed for the first time in this work to operate as data consolidation approach of different e-learning knowledge-bases hence leading to enrich on-top analysis. For demonstration purposes, the proposed ontological model is populated with real-world private and public data sources from different LMSs referring university courses of the Software Engineering degree of the University of Malaga (Spain) and the Open University Learning. [...]

Description

Bibliographic citation

Paneque, M., Roldán-García, M. del Mar , & García-Nieto, J. (2023). e-LION: Data integration semantic model to enhance predictive analytics in e-Learning. Expert Systems with Applications, 213, 118892.

Collections

Endorsement

Review

Supplemented By

Referenced by

Creative Commons license

Except where otherwised noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional