Dual-System Recommendation Architecture for Adaptive Reading Intervention Platform Tailored for Dyslexic Learners

dc.centroE.T.S.I. Telecomunicaciónes_ES
dc.contributor.authorMateo-Trujillo, J. Ignacio
dc.contributor.authorCastillo-Barnes, Diego
dc.contributor.authorRodríguez-Rodríguez, Ignacio
dc.contributor.authorOrtiz-García, Andrés
dc.contributor.authorPeinado-Domínguez, Alberto
dc.contributor.authorLuque-Vilaseca, Juan Luis
dc.contributor.authorSánchez-Gómez, Auxiliadora
dc.date.accessioned2024-01-26T11:55:29Z
dc.date.available2024-01-26T11:55:29Z
dc.date.issued2024
dc.departamentoIngeniería de Comunicaciones
dc.description.abstractDyslexia poses substantial literacy challenges with profound academic and psychosocial impacts for affected children. Though evidence affirms that early reading interventions can significantly improve outcomes, traditional one-size-fits-all approaches often fail to address students’ unique skill gaps. This study details an adaptive reading platform that customizes word recognition tasks to each learner’s evolving abilities using embedded recommender engines. Initial standardized assessments categorize words by difficulty and cluster students by competency level. An integrated word generator then expands the benchmark lexicon by algorithmically manipulating phonetic properties to modulate complexity. Dual intra-user and inter-user systems track learner performance to tailor content to individuals’ pacing. Heuristic bootstrapping and simulated user data facilitate cold start recommendations and evaluate model robustness. Analysis of five virtual student response patterns demonstrates platform reliability against volatility. Successive interventions display narrowing score dispersion alongside upwards literacy trajectories. Logarithmic score pro-gressions signify responsive tuning to emerging mastery, accelerating ad-vancement, and tapering gains as maximal outcomes reached. Results validate system effectiveness in optimizing challenge levels to unlock growth for neuro-logical diversity. Rapid stabilization around optimal zones signifies an efficiently learned model while improved achievement confirms scaffolding precision. Learning curves substantiate tailored recommendation efficacy and signal user transitions from constructing new knowledge to demonstrative skill gains. Overall, the approach shows immense promise in administering personalized, engagement-focused reading support.es_ES
dc.description.sponsorshipUniversidad de Málaga. Campus de Excelencia Internacional Andalucía Tech.es_ES
dc.identifier.urihttps://hdl.handle.net/10630/29307
dc.language.isospaes_ES
dc.relation.eventdate04/06/2024es_ES
dc.relation.eventplaceOlhao (Portugal)es_ES
dc.relation.eventtitleInternational Conference on the Interplay between Natural and Artificial Computationes_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectDislexiaes_ES
dc.subjectSistemas adaptativoses_ES
dc.subjectLectura - Estudio y enseñanzaes_ES
dc.subject.otherDyslexiaes_ES
dc.subject.otherReading Interventiones_ES
dc.subject.otherAdaptive Recommendation Systemses_ES
dc.subject.otherWord Generatores_ES
dc.subject.otherSimulated Learner Modelinges_ES
dc.titleDual-System Recommendation Architecture for Adaptive Reading Intervention Platform Tailored for Dyslexic Learnerses_ES
dc.typeconference outputes_ES
dspace.entity.typePublication
relation.isAuthorOfPublication5d9e81fc-5f53-42ea-82c8-809b9defd772
relation.isAuthorOfPublication2ed62a93-4a47-47c9-a25a-8d1060e977ed
relation.isAuthorOfPublicationae01056f-b4bd-452b-9139-f397c289666f
relation.isAuthorOfPublication.latestForDiscovery5d9e81fc-5f53-42ea-82c8-809b9defd772

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Paper IWINAC.pdf
Size:
255.2 KB
Format:
Adobe Portable Document Format
Description: