CNN-Based Methods for Object Recognition With High-Resolution Tactile Sensors.

dc.centroEscuela de Ingenierías Industrialeses_ES
dc.contributor.authorGandarias Palacios, Juan Manuel
dc.contributor.authorGarcía-Cerezo, Alfonso José
dc.contributor.authorGómez-de-Gabriel, Jesús Manuel
dc.date.accessioned2024-09-30T10:26:32Z
dc.date.available2024-09-30T10:26:32Z
dc.date.issued2019-08-15
dc.departamentoIngeniería de Sistemas y Automática
dc.description.abstractNovel high-resolution pressure-sensor arrays allow treating pressure readings as standard images. Computer vision algorithms and methods such as convolutional neural networks (CNN) can be used to identify contact objects. In this paper, a high-resolution tactile sensor has been attached to a robotic end-effector to identify contacted objects. Two CNN-based approaches have been employed to classify pressure images. These methods include a transfer learning approach using a pre-trained CNN on an RGB-images dataset and a custom-made CNN (TactNet) trained from scratch with tactile information. The transfer learning approach can be carried out by retraining the classification layers of the network or replacing these layers with an SVM. Overall, 11 configurations based on these methods have been tested: eight transfer learning-based, and three TactNet-based. Moreover, a study of the performance of the methods and a comparative discussion with the current state-of-the-art on tactile object recognition is presented.es_ES
dc.identifier.citationJ. M. Gandarias, A. J. García-Cerezo and J. M. Gómez-de-Gabriel, "CNN-Based Methods for Object Recognition With High-Resolution Tactile Sensors," in IEEE Sensors Journal, vol. 19, no. 16, pp. 6872-6882, 15 Aug.15, 2019, doi: 10.1109/JSEN.2019.2912968es_ES
dc.identifier.doi10.1109/JSEN.2019.2912968
dc.identifier.urihttps://hdl.handle.net/10630/34005
dc.language.isoenges_ES
dc.publisherIEEEes_ES
dc.rights.accessRightsopen accesses_ES
dc.subjectAprendizaje automático (Inteligencia artificial)es_ES
dc.subjectDetectoreses_ES
dc.subject.otherFeature extractiones_ES
dc.subject.otherObject recognitiones_ES
dc.subject.otherTactile sensorses_ES
dc.subject.otherDeep learninges_ES
dc.titleCNN-Based Methods for Object Recognition With High-Resolution Tactile Sensors.es_ES
dc.typejournal articlees_ES
dc.type.hasVersionSMURes_ES
dspace.entity.typePublication
relation.isAuthorOfPublication111d26c1-efd3-4b8a-a05b-420a796580e0
relation.isAuthorOfPublicatione12aaab5-66be-4d72-bd9c-36dc69c1f4cf
relation.isAuthorOfPublication.latestForDiscovery111d26c1-efd3-4b8a-a05b-420a796580e0

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
J_2019_IEEESensors_CNN.pdf
Size:
2.87 MB
Format:
Adobe Portable Document Format
Description:
Artículo
Download

Description: Artículo

Collections