Category Theory Framework for Variability Models with Non-Functional Requirements.

dc.centroE.T.S.I. Informáticaes_ES
dc.contributor.authorMuñoz-Guerra, Daniel Jesús
dc.contributor.authorGurov, Dilian
dc.contributor.authorPinto-Alarcón, Mónica
dc.contributor.authorFuentes-Fernández, Lidia
dc.date.accessioned2025-12-04T09:47:20Z
dc.date.available2025-12-04T09:47:20Z
dc.date.issued2021-06-24
dc.departamentoInstituto de Tecnología e Ingeniería del Software de la Universidad de Málagaes_ES
dc.departamentoLenguajes y Ciencias de la Computaciónes_ES
dc.descriptionMunoz, Pinto and Fuentes work is supported by the European Union's H2020 research and innovation programme under grant agreement DAEMON 101017109, by the projects co-financed by FEDER funds LEIA UMA18-FEDERJA-15, MEDEA RTI2018-099213-B-I00 and Rhea P18-FR-1081 and the PRE2019-087496 grant from the Ministerio de Ciencia e Innovación.es_ES
dc.descriptionhttps://www.springernature.com/gp/open-science/policies/book-policies
dc.description.abstractIn Software Product Line (SPL) engineering one uses Variability Models (VMs) as input to automated reasoners to generate optimal products according to certain Quality Attributes (QAs). Variability models, however, and more specifically those including numerical features (i.e., NVMs), do not natively support QAs, and consequently, neither do automated reasoners commonly used for variability resolution. However, those satisfiability and optimisation problems have been covered and refined in other relational models such as databases. Category Theory (CT) is an abstract mathematical theory typically used to capture the common aspects of seemingly dissimilar algebraic structures. We propose a unified relational modelling framework subsuming the structured objects of VMs and QAs and their relationships into algebraic categories. This abstraction allows a combination of automated reasoners over different domains to analyse SPLs. The solutions’ optimisation can now be natively performed by a combination of automated theorem proving, hashing, balanced-trees and chasing algorithms. We validate this approach by means of the edge computing SPL tool HADAS.es_ES
dc.identifier.doi10.1007/978-3-030-79382-1_24
dc.identifier.isbn978-3-030-79382-1
dc.identifier.issn1611-3349
dc.identifier.urihttps://hdl.handle.net/10630/40990
dc.language.isoenges_ES
dc.publisherSpringeres_ES
dc.relation.eventdate28 Junio a 2 Julio 2021es_ES
dc.relation.eventplaceMelbournees_ES
dc.relation.eventtitle33rd International Conference on Advanced Information Systems Engineering (CAiSE 2021)es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/101017109/EU/Network intelligence for aDAptive and sElf-learning MObile Networks/DAEMONes_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/Junta de Andalucia/FEDER/UMA18-FEDERJA-15/ES/LEIA/LEIAes_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/Ministerio de Ciencia e Innovacion/Retos Investigacion/RTI2018-099213-B-I00/ES/Metodologías para el Desarrollo de Aplicaciones IoT de Extremo a Extremo/MEDEAes_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/Junta de Andalucia/PAIDI 2020/P18-FR-1081/ES/Reingeniería para la Heterogeneidad y Evolución de Aplicaciones/Rheaes_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/Ministerio de Ciencia e Innovacion/FPI/PRE2019-087496/ES/Ayudas para contratos predoctorales para la formación de doctores/PRE2019es_ES
dc.rights.accessRightsopen accesses_ES
dc.subjectIngeniería del softwarees_ES
dc.subject.otherNumerical variability modeles_ES
dc.subject.otherFeaturees_ES
dc.subject.otherNon-functional requirementes_ES
dc.subject.otherQuality attributees_ES
dc.subject.otherCategory theoryes_ES
dc.titleCategory Theory Framework for Variability Models with Non-Functional Requirements.es_ES
dc.typeconference outputes_ES
dspace.entity.typePublication
relation.isAuthorOfPublication839f00c1-d583-4eeb-bb1e-d529b1df6967
relation.isAuthorOfPublication431c7076-c749-483c-8fd6-b9c18bf33a13
relation.isAuthorOfPublication.latestForDiscovery839f00c1-d583-4eeb-bb1e-d529b1df6967

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
CAISE_21_Daniel_Jesus_Munoz.pdf
Size:
1.15 MB
Format:
Adobe Portable Document Format
Description:
Artículo principal
Download

Description: Artículo principal