Porous SiO2 Nanospheres Modified with ZrO2 and Their Use in One- Pot Catalytic Processes to Obtain Value-Added Chemicals from Furfural
Loading...
Files
Description: Artículo principal
Identifiers
Publication date
Reading date
Collaborators
Advisors
Tutors
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Chemical Society
Share
Center
Department/Institute
Abstract
Porous SiO2 nanospheres have been modified with different proportion of ZrO2 to obtain catalysts with Si/Zr molar ratio between 2.5 and 30. These materials were characterized by X-ray diffraction, transmission electron microscopy, scanning electron microscopy, N2 adsorption-desorption at -196 ºC, X-ray photoelectron spectroscopy and pyridine and 2-6-dimethylpyridine thermoprogrammed desorption. The characterization of these catalysts reveals that the incorporation of a high proportion of Zr favors the formation of Lewis acid sites, which are implied in catalytic transfer hydrogenation processes, whereas the low Brönsted acidity promote dehydration reaction, in such a way that it is possible to obtain a wide range of products from FUR through consecutive reactions, such as furfuryl alcohol, i-propyl furfuryl ether, i-propyl levulinate and γ-valerolactone in a range of temperature of 110-170 ºC between 1-6 h of reaction.
Description
Bibliographic citation
Collections
Endorsement
Review
Supplemented By
Referenced by
Creative Commons license
Except where otherwised noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional














