Sovereign Debt and Currency Crises Prediction Models Using Machine Learning Techniques.

dc.contributor.authorAlaminos, David
dc.contributor.authorPeláez-Sánchez, José Ignacio
dc.contributor.authorSalas-Compás, María Belén
dc.contributor.authorFernández-Gámez, Manuel Ángel
dc.date.accessioned2024-07-24T08:34:51Z
dc.date.available2024-07-24T08:34:51Z
dc.date.issued2021-04-12
dc.departamentoFinanzas y Contabilidad
dc.descriptionThis research was funded by Cátedra de Economía y Finanzas Sostenibles, Universidad de Málaga, Spain. Partial funding for open access charge: Universidad de Málagaes_ES
dc.description.abstractSovereign debt and currencies play an increasingly influential role in the development of any country, given the need to obtain financing and establish international relations. A recurring theme in the literature on financial crises has been the prediction of sovereign debt and currency crises due to their extreme importance in international economic activity. Nevertheless, the limitations of the existing models are related to accuracy and the literature calls for more investigation on the subject and lacks geographic diversity in the samples used. This article presents new models for the prediction of sovereign debt and currency crises, using various computational techniques, which increase their precision. Also, these models present experiences with a wide global sample of the main geographical world zones, such as Africa and the Middle East, Latin America, Asia, Europe, and globally. Our models demonstrate the superiority of computational techniques concerning statistics in terms of the level of precision, which are the best methods for the sovereign debt crisis: fuzzy decision trees, AdaBoost, extreme gradient boosting, and deep learning neural decision trees, and for forecasting the currency crisis: deep learning neural decision trees, extreme gradient boosting, random forests, and deep belief network. Our research has a large and potentially significant impact on the macroeconomic policy adequacy of the countries against the risks arising from financial crises and provides instruments that make it possible to improve the balance in the finance of the countries.es_ES
dc.identifier.citationAlaminos, D.; Peláez, J.I.; Salas, M.B.; Fernández-Gámez, M.A. Sovereign Debt and Currency Crises Prediction Models Using Machine Learning Techniques. Symmetry 2021, 13, 652.es_ES
dc.identifier.doi10.3390/ sym13040652
dc.identifier.urihttps://hdl.handle.net/10630/32285
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsAttribution 4.0 Internacional
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectCrisis financieras - Modelos econométricoses_ES
dc.subjectDeuda pública - Modelos econométricoses_ES
dc.subject.otherSovereign debt crisis predictiones_ES
dc.subject.otherCurrency crisis predictiones_ES
dc.subject.otherDeep learning neural decision treeses_ES
dc.subject.otherFuzzy decision treeses_ES
dc.subject.otherExtreme gradient boostinges_ES
dc.subject.otherCountry reputationes_ES
dc.titleSovereign Debt and Currency Crises Prediction Models Using Machine Learning Techniques.es_ES
dc.typejournal articlees_ES
dc.type.hasVersionVoRes_ES
dspace.entity.typePublication
relation.isAuthorOfPublication08a53aab-04fa-44c6-a31e-4bcca8e75d2e
relation.isAuthorOfPublicationcde56a8e-8f87-4d0f-9fb9-681aa64fbe2d
relation.isAuthorOfPublication66b2fccb-df43-4f28-bda8-b65ce3da920f
relation.isAuthorOfPublication.latestForDiscovery08a53aab-04fa-44c6-a31e-4bcca8e75d2e

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
5.SovereignDebtAndCurrencyCrisesPredictionModelsUsingMachineLearningTechniquesSymmetry-13-00652.pdf
Size:
759.07 KB
Format:
Adobe Portable Document Format
Description:
Artículo principal
Download

Description: Artículo principal

Collections