Facing robustness as a multi-objective problem: A bi-objective shortest path problem in smart regions

dc.centroE.T.S.I. Informáticaes_ES
dc.contributor.authorCintrano López, Christian
dc.contributor.authorChicano-García, José-Francisco
dc.contributor.authorAlba-Torres, Enrique
dc.date.accessioned2024-10-01T11:15:13Z
dc.date.available2024-10-01T11:15:13Z
dc.date.issued2019-11
dc.departamentoInstituto de Tecnología e Ingeniería del Software de la Universidad de Málaga
dc.description.abstractThe goal in Robust Optimization is to optimize not only the quality of the solutions but also the variation of this quality with the uncertain parameters of the optimization problem. We propose a robust model for the bi-objective shortest path problem applied in a smart mobility context: Finding routes for cars in a city to minimize travel time and gas emissions. Our proposal treats robustness from a multi-objective point of view. We model the parameters that define each instance as random variables, described through their mean and variance. In this way, we can obtain efficient solutions that are also less sensitive to changes in the environment. We run different types of algorithms in multiple instances to solve this problem so that we obtain a global view of the behavior of different techniques. All experimentation uses a scenario based on real data: The province of Malaga, Spain. This realistic settlement for our study allows us to test the applicability of our model in final systems for the citizens. The results clearly state the interest of our proposal for tackling robustness and represents a new state-of-the-art in smart mobility, an always appealing feature of works, that could lead to an industrial prototype.es_ES
dc.description.sponsorshipThis research has been partially funded by the Spanish MINECO and FEDER projects TIN2014-57341-R, TIN2016-81766-REDT, and TIN2017-88213-R. C. Cintrano is supported by a FPI grant (BES-2015-074805) from Spanish MINECO. It has also been partially funded bythe Universidad de Málaga, Andalucia TECH.es_ES
dc.identifier.citationCintrano, C., Chicano, F., & Alba, E. (2019). Facing robustness as a multi-objective problem: A bi-objective shortest path problem in smart regions. Information Sciences, 503, 255-273. https://doi.org/10.1016/j.ins.2019.07.014es_ES
dc.identifier.doihttps://doi.org/10.1016/j.ins.2019.07.014
dc.identifier.urihttps://hdl.handle.net/10630/34134
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.relation.ispartofseriesInformation Sciences;503
dc.rights.accessRightsopen accesses_ES
dc.subjectOptimización matemáticaes_ES
dc.subjectOptimización combinatoriaes_ES
dc.subject.otherRobustnesses_ES
dc.subject.otherTraffic road networkes_ES
dc.subject.otherBi-objective shortest pathes_ES
dc.subject.otherMulti-objective optimizationes_ES
dc.titleFacing robustness as a multi-objective problem: A bi-objective shortest path problem in smart regionses_ES
dc.title.alternativeFacing robustness as a multi-objective problem: A bi-objective shortest path problem in smart regionses_ES
dc.typejournal articlees_ES
dc.type.hasVersionSMURes_ES
dspace.entity.typePublication
relation.isAuthorOfPublication6f65e289-6502-4756-871c-dbe0ca9be545
relation.isAuthorOfPublicatione8596ab5-92f0-420d-a394-17d128c965da
relation.isAuthorOfPublication.latestForDiscovery6f65e289-6502-4756-871c-dbe0ca9be545

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Facing_Robustness_FINAL_PREPRINT.pdf
Size:
5.77 MB
Format:
Adobe Portable Document Format
Description:
Preprint
Download

Description: Preprint

Collections