Latency Fairness Optimization on Wireless Networks Through Deep Reinforcement Learning
| dc.contributor.author | López-Sánchez, María | |
| dc.contributor.author | Villena-Rodríguez, Alejandro | |
| dc.contributor.author | Gómez-Paredes, Gerardo | |
| dc.contributor.author | Martín-Vega, Francisco-Javier | |
| dc.contributor.author | Aguayo-Torres, María del Carmen | |
| dc.date.accessioned | 2025-11-21T12:49:35Z | |
| dc.date.available | 2025-11-21T12:49:35Z | |
| dc.date.issued | 2022-11-23 | |
| dc.departamento | Ingeniería de Comunicaciones | es_ES |
| dc.description | https://openpolicyfinder.jisc.ac.uk/id/publication/3582 | es_ES |
| dc.description.abstract | In this paper, we propose a novel deep reinforcement learning (DRL) framework to maximize user fairness in terms of delay. To this end, we devise a new version of the modified largest weighted delay first (M-LWDF) algorithm, called β-M-LWDF, aiming to fulfill an appropriate balance between user fairness and average delay. This balance is defined as a feasible region on the cumulative distribution function (CDF) of the user delay that allows identifying unfair states, feasible-fair states, and over-fair states. Simulation results reveal that our proposed framework outperforms traditional resource allocation techniques in terms of latency fairness and average delay. | es_ES |
| dc.description.sponsorship | Unión Europea | es_ES |
| dc.description.sponsorship | Junta de Andalucía | es_ES |
| dc.description.sponsorship | Universidad de Málaga | es_ES |
| dc.description.sponsorship | Agencia Estatal de Investigación | es_ES |
| dc.identifier.citation | M. López-Sánchez, A. Villena-Rodríguez, G. Gómez, F. J. Martín-Vega and M. C. Aguayo-Torres, "Latency Fairness Optimization on Wireless Networks Through Deep Reinforcement Learning," in IEEE Transactions on Vehicular Technology, vol. 72, no. 4, pp. 5407-5412, April 2023, doi: 10.1109/TVT.2022.3224368 | es_ES |
| dc.identifier.doi | 10.1109/TVT.2022.3224368 | |
| dc.identifier.uri | https://hdl.handle.net/10630/40872 | |
| dc.language.iso | eng | es_ES |
| dc.publisher | IEEE | es_ES |
| dc.relation.projectID | info:eu-repo/grantAgreement/JuntaAndalucia/PAIDI/P18-RT-3175/// | es_ES |
| dc.relation.projectID | info:eu-repo/grantAgreement/JuntaAndalucia/PAIDI/P18-TP-3587/// | es_ES |
| dc.relation.projectID | info:eu-repo/grantAgreement/JuntaAndalucia/PAIDI/UMA20-FEDERJA-002/// | es_ES |
| dc.relation.projectID | info:eu-repo/grantAgreement/JuntaAndalucia/PAIDI2020/DOC_00265/// | es_ES |
| dc.rights.accessRights | open access | es_ES |
| dc.subject | Aprendizaje automático (Inteligencia artificial) | es_ES |
| dc.subject | Sistemas de comunicación inalámbricos | es_ES |
| dc.subject.other | Scheduling | es_ES |
| dc.subject.other | 5G | es_ES |
| dc.subject.other | Latency | es_ES |
| dc.subject.other | Reinforcement learning | es_ES |
| dc.subject.other | Deep learning | es_ES |
| dc.title | Latency Fairness Optimization on Wireless Networks Through Deep Reinforcement Learning | es_ES |
| dc.type | journal article | es_ES |
| dc.type.hasVersion | AM | es_ES |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | 8eef6134-cf8a-4ffb-a92f-174a2743f9c9 | |
| relation.isAuthorOfPublication | 41b342d3-e666-4f74-89b4-177a933a35af | |
| relation.isAuthorOfPublication.latestForDiscovery | 8eef6134-cf8a-4ffb-a92f-174a2743f9c9 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- TVT_Scheduling__Final_version_.pdf
- Size:
- 542.59 KB
- Format:
- Adobe Portable Document Format
- Description:

