Latency Fairness Optimization on Wireless Networks Through Deep Reinforcement Learning

dc.contributor.authorLópez-Sánchez, María
dc.contributor.authorVillena-Rodríguez, Alejandro
dc.contributor.authorGómez-Paredes, Gerardo
dc.contributor.authorMartín-Vega, Francisco-Javier
dc.contributor.authorAguayo-Torres, María del Carmen
dc.date.accessioned2025-11-21T12:49:35Z
dc.date.available2025-11-21T12:49:35Z
dc.date.issued2022-11-23
dc.departamentoIngeniería de Comunicacioneses_ES
dc.descriptionhttps://openpolicyfinder.jisc.ac.uk/id/publication/3582es_ES
dc.description.abstractIn this paper, we propose a novel deep reinforcement learning (DRL) framework to maximize user fairness in terms of delay. To this end, we devise a new version of the modified largest weighted delay first (M-LWDF) algorithm, called β-M-LWDF, aiming to fulfill an appropriate balance between user fairness and average delay. This balance is defined as a feasible region on the cumulative distribution function (CDF) of the user delay that allows identifying unfair states, feasible-fair states, and over-fair states. Simulation results reveal that our proposed framework outperforms traditional resource allocation techniques in terms of latency fairness and average delay.es_ES
dc.description.sponsorshipUnión Europeaes_ES
dc.description.sponsorshipJunta de Andalucíaes_ES
dc.description.sponsorshipUniversidad de Málagaes_ES
dc.description.sponsorshipAgencia Estatal de Investigaciónes_ES
dc.identifier.citationM. López-Sánchez, A. Villena-Rodríguez, G. Gómez, F. J. Martín-Vega and M. C. Aguayo-Torres, "Latency Fairness Optimization on Wireless Networks Through Deep Reinforcement Learning," in IEEE Transactions on Vehicular Technology, vol. 72, no. 4, pp. 5407-5412, April 2023, doi: 10.1109/TVT.2022.3224368es_ES
dc.identifier.doi10.1109/TVT.2022.3224368
dc.identifier.urihttps://hdl.handle.net/10630/40872
dc.language.isoenges_ES
dc.publisherIEEEes_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/JuntaAndalucia/PAIDI/P18-RT-3175///es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/JuntaAndalucia/PAIDI/P18-TP-3587///es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/JuntaAndalucia/PAIDI/UMA20-FEDERJA-002///es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/JuntaAndalucia/PAIDI2020/DOC_00265///es_ES
dc.rights.accessRightsopen accesses_ES
dc.subjectAprendizaje automático (Inteligencia artificial)es_ES
dc.subjectSistemas de comunicación inalámbricoses_ES
dc.subject.otherSchedulinges_ES
dc.subject.other5Ges_ES
dc.subject.otherLatencyes_ES
dc.subject.otherReinforcement learninges_ES
dc.subject.otherDeep learninges_ES
dc.titleLatency Fairness Optimization on Wireless Networks Through Deep Reinforcement Learninges_ES
dc.typejournal articlees_ES
dc.type.hasVersionAMes_ES
dspace.entity.typePublication
relation.isAuthorOfPublication8eef6134-cf8a-4ffb-a92f-174a2743f9c9
relation.isAuthorOfPublication41b342d3-e666-4f74-89b4-177a933a35af
relation.isAuthorOfPublication.latestForDiscovery8eef6134-cf8a-4ffb-a92f-174a2743f9c9

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
TVT_Scheduling__Final_version_.pdf
Size:
542.59 KB
Format:
Adobe Portable Document Format
Description:

Collections