InDM2: interactive dynamic multi-objective decision making using evolutionary algorithms

dc.centroE.T.S.I. Informáticaes_ES
dc.contributor.authorNebro-Urbaneja, Antonio Jesús
dc.contributor.authorRuiz-Mora, Ana Belén
dc.contributor.authorBarba-González, Cristóbal
dc.contributor.authorGarcía-Nieto, José Manuel
dc.contributor.authorLuque-Gallego, Mariano
dc.contributor.authorAldana-Montes, José Francisco
dc.date.accessioned2025-01-20T11:09:12Z
dc.date.available2025-01-20T11:09:12Z
dc.date.issued2018-05-24
dc.departamentoInstituto de Tecnología e Ingeniería del Software de la Universidad de Málaga
dc.description.abstractDynamic optimization problems involving two or more conflicting objectives appear in many real-world scenarios, and more cases are expected to appear in the near future with the increasing interest in the analysis of streaming data sources in the context of Big Data applications. However, approaches combining dynamic multi-objective optimization with preference articulation are still scarce. In this paper, we propose a new dynamic multi-objective optimization algorithm called InDM2 that allows the preferences of the decision maker (DM) to be incorporated into the search process. When solving a dynamic multi-objective optimization problem with InDM2, the DM can not only express her/his preferences by means of one or more reference points (which define the desired region of interest), but these points can be also modified interactively. InDM2 is enhanced with methods to graphically display the different approximations of the region of interest obtained during the optimization process. In this way, the DM is able to inspect and change, in optimization time, the desired region of interest according to the information displayed. We describe the main features of InDM2 and detail how it is implemented. Its performance is illustrated using both synthetic and real-world dynamic multi-objective optimization problems.es_ES
dc.description.sponsorshipThis work is partially funded by Grants TIN2017-86049-R, TIN2014-58304 and ECO2014-56397-P (Ministerio de Ciencia e Innovación), and P11-TIC-7529 and P12-TIC-1519 (Plan Andaluz I+D+I). Cristóbal Barba-González is supported by Grant BES-2015-072209 (Spanish Ministry of Economy and Competitiveness). Ana B. Ruiz and José García-Nieto are recipient of a Post-Doctoral fellowship of “Captación de Talento para la Investigación” at Universidad de Málaga.es_ES
dc.identifier.citationAntonio J. Nebro, Ana B. Ruiz, Cristóbal Barba-González, José García-Nieto, Mariano Luque, José F. Aldana-Montes, InDM2: Interactive Dynamic Multi-Objective Decision Making Using Evolutionary Algorithms, Swarm and Evolutionary Computation, Volume 40, 2018, Pages 184-195, ISSN 2210-6502, https://doi.org/10.1016/j.swevo.2018.02.004.es_ES
dc.identifier.doi10.1016/j.swevo.2018.02.004
dc.identifier.urihttps://hdl.handle.net/10630/36558
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectComputación evolutivaes_ES
dc.subject.otherDynamic multi-objective optimizationes_ES
dc.subject.otherMultiple criteria decision makinges_ES
dc.subject.otherPreferenceses_ES
dc.subject.otherEvolutionary algorithmses_ES
dc.subject.otherjMetalSPes_ES
dc.titleInDM2: interactive dynamic multi-objective decision making using evolutionary algorithmses_ES
dc.typejournal articlees_ES
dc.type.hasVersionAMes_ES
dspace.entity.typePublication
relation.isAuthorOfPublicationeddeb2e3-acaf-483e-bb13-cebb22c18413
relation.isAuthorOfPublicatione6c7779d-ecb2-4482-b2e5-d26830558834
relation.isAuthorOfPublicatione8971462-20b8-442f-aeea-797c6233b905
relation.isAuthorOfPublication04a9ec70-bfda-4089-b4d7-c24dd0870d17
relation.isAuthorOfPublication39347849-2655-4c96-b184-737a7a0673f2
relation.isAuthorOfPublication7eac9d6a-0152-4268-8207-ea058c82e531
relation.isAuthorOfPublication.latestForDiscoveryeddeb2e3-acaf-483e-bb13-cebb22c18413

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
InDM2.pdf
Size:
1.66 MB
Format:
Adobe Portable Document Format
Description:

Collections