Improving learning and generalization capabilities of the C-Mantec constructive neural network algorithm.
| dc.centro | E.T.S.I. Informática | es_ES |
| dc.contributor.author | Gómez-Gallego, Iván | |
| dc.contributor.author | Mesa, Héctor | |
| dc.contributor.author | Ortega-Zamorano, Francisco | |
| dc.contributor.author | Jerez-Aragonés, José Manuel | |
| dc.contributor.author | Franco, Leónardo | |
| dc.date.accessioned | 2025-10-16T09:09:59Z | |
| dc.date.available | 2025-10-16T09:09:59Z | |
| dc.date.issued | 2019-08-01 | |
| dc.departamento | Lenguajes y Ciencias de la Computación | es_ES |
| dc.description.abstract | C-Mantec neural network constructive algorithm Ortega (C-Mantec neural network algorithm implementation on MATLAB. https://github.com/IvanGGomez/CmantecPaco, 2015) creates very compact architectures with generalization capabilities similar to feed-forward networks trained by the well-known back-propagation algorithm. Nevertheless, constructive algorithms suffer much from the problem of overfitting, and thus, in this work the learning procedure is first analyzed for networks created by this algorithm with the aim of trying to understand the training dynamics that will permit optimization possibilities. Secondly, several optimization strategies are analyzed for the position of class separating hyperplanes, and the results analyzed on a set of public domain benchmark data sets. The results indicate that with these modifications a small increase in prediction accuracy of C-Mantec can be obtained but in general this was not better when compared to a standard support vector machine, except in some cases when a mixed strategy is used. | es_ES |
| dc.identifier.citation | Gómez, I., Mesa, H., Ortega-Zamorano, F. et al. Improving learning and generalization capabilities of the C-Mantec constructive neural network algorithm. Neural Comput & Applic 32, 8955–8963 (2020). | es_ES |
| dc.identifier.doi | 10.1007/s00521-019-04388-2 | |
| dc.identifier.uri | https://hdl.handle.net/10630/40267 | |
| dc.language.iso | eng | es_ES |
| dc.publisher | Springer | es_ES |
| dc.rights.accessRights | open access | es_ES |
| dc.subject | Redes neuronales (Informática) | es_ES |
| dc.subject | Aprendizaje automático (Inteligencia artificial) | es_ES |
| dc.subject | Proceso de vectores (Informática) | es_ES |
| dc.subject.other | Constructive neural network | es_ES |
| dc.subject.other | Feed-forward network | es_ES |
| dc.subject.other | Support vector machine | es_ES |
| dc.subject.other | C-Mantec | es_ES |
| dc.subject.other | Learning and generalization properties | es_ES |
| dc.subject.other | Loading problem | es_ES |
| dc.title | Improving learning and generalization capabilities of the C-Mantec constructive neural network algorithm. | es_ES |
| dc.type | journal article | es_ES |
| dc.type.hasVersion | AM | es_ES |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | 4cfc0f03-bc7e-4a0f-b5f3-493493bf1d57 | |
| relation.isAuthorOfPublication | b6f27291-58a9-4408-860c-12508516ff67 | |
| relation.isAuthorOfPublication | f7a611d4-56e6-4eb6-b5f1-ff03a60e3451 | |
| relation.isAuthorOfPublication.latestForDiscovery | 4cfc0f03-bc7e-4a0f-b5f3-493493bf1d57 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- PDF_J10_2020.pdf
- Size:
- 433.94 KB
- Format:
- Adobe Portable Document Format
- Description:

