Advances in electrospun composite polymer/zeolite and geopolymer nanofibers: A comprehensive review.
Loading...
Identifiers
Publication date
Reading date
Collaborators
Advisors
Tutors
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Share
Department/Institute
Abstract
Electrospinning is widely recognized as an efficient, simple, and cost-effective technique for producing nanofibers. It has successfully led to the fabrication of various ultrafine polymer composites. This method has spurred extensive research in fields such as medicine, electronics, chemistry, and physics, where producing materials via electrospinning is very promising for revolutionizing many fields. This paper presents a comprehensive review of the latest research and developments on electrospun composite polymer/zeolite nanofibers and geopolymers. The study examines processing, structure, characterization, and potential applications. Detailed information on these composites, including their specific electrospinning conditions, has been thoughtfully summarized in this work. Furthermore, we address important concerns related to the technology’s limitations and existing research challenges. In the studies analyzed, a diverse range of polymers was employed, the most frequent were polyvinyl alcohol, polycaprolactone, and polylactic acid. The applications of zeolite/polymer composites were equally varied, encompassing fields such as catalysis, filtration, adsorption, and pesticide residue analysis in food samples. Moreover, these composites were found to be useful in the medical sector, including applications in dental tissue engineering and for treating bacterial infections.
Description
Política de acceso abierto: https://v2.sherpa.ac.uk/id/publication/16964
Bibliographic citation
Mariana Schneider, Enrique Rodríguez-Castellón, M. Olga Guerrero-Pérez, Dachamir Hotza, Agenor De Noni, Regina de Fátima Peralta Muniz Moreira, Advances in electrospun composite polymer/zeolite and geopolymer nanofibers: A comprehensive review, Separation and Purification Technology, Volume 340, 2024, 126684, ISSN 1383-5866, https://doi.org/10.1016/j.seppur.2024.126684
Collections
Endorsement
Review
Supplemented By
Referenced by
Creative Commons license
Except where otherwised noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional












