Tiled Sparse Coding in Eigenspaces for Image Classification.

dc.centroE.T.S.I. Telecomunicaciónes_ES
dc.contributor.authorArco, Juan E.
dc.contributor.authorOrtiz-García, Andrés
dc.contributor.authorRamírez, Javier
dc.contributor.authorZhang, Yu-Dong
dc.contributor.authorGórriz-Sáez, Juan Manuel
dc.date.accessioned2023-11-22T12:14:31Z
dc.date.available2023-11-22T12:14:31Z
dc.date.issued2021-12-30
dc.departamentoIngeniería de Comunicaciones
dc.description.abstractThe automation in the diagnosis of medical images is currently a challenging task. The use of Computer Aided Diagnosis (CAD) systems can be a powerful tool for clinicians, especially in situations when hospitals are overflowed. These tools are usually based on artificial intelligence (AI), a field that has been recently revolutionized by deep learning approaches. These alternatives usually obtain a large performance based on complex solutions, leading to a high computational cost and the need of having large databases. In this work, we propose a classification framework based on sparse coding. Images are first partitioned into different tiles, and a dictionary is built after applying PCA to these tiles. The original signals are then transformed as a linear combination of the elements of the dictionary. Then, they are reconstructed by iteratively deactivating the elements associated with each component. Classification is finally performed employing as features the subsequent reconstruction errors. Performance is evaluated in a real context where distinguishing between four different pathologies: control versus bacterial pneumonia versus viral pneumonia versus COVID-19. Our system differentiates between pneumonia patients and controls with an accuracy of 97.74%, whereas in the 4-class context the accuracy is 86.73%. The excellent results and the pioneering use of sparse coding in this scenario evidence that our proposal can assist clinicians when their workload is high.es_ES
dc.description.sponsorshipThis work was supported by the MCIN/ AEI/10.13039/501100011033/ and FEDER “Una manera de hacer Europa” under the RTI2018- 098913-B100 project, by the Consejer´ıa de Econom´ıa, Innovaci´on, Ciencia y Empleo (Junta de Andaluc´ıa) and FEDER under CV20-45250, A TIC-080-UGR18, B-TIC-586-UGR20 and P20-00525 projects.es_ES
dc.identifier.citationArco, Juan & Ortiz, Andrés & Ramírez, Javier & Zhang, Yudong & Gorriz, Juan. (2021). Tiled Sparse Coding in Eigenspaces for Image Classification. International Journal of Neural Systems. 32. 10.1142/S0129065722500071.es_ES
dc.identifier.doi10.1142/S0129065722500071
dc.identifier.urihttps://hdl.handle.net/10630/28108
dc.language.isoenges_ES
dc.publisherWorld Scientifices_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectNeumoníaes_ES
dc.subjectDiagnóstico por imagenes_ES
dc.subjectInteligencia artificiales_ES
dc.subject.otherComputer-aided diagnosises_ES
dc.subject.otherMedical imaginges_ES
dc.subject.otherMachine learninges_ES
dc.subject.otherDeep learninges_ES
dc.subject.otherSparse codinges_ES
dc.subject.otherDictionaryes_ES
dc.subject.otherPneumoniaes_ES
dc.subject.otherCOVID-19es_ES
dc.titleTiled Sparse Coding in Eigenspaces for Image Classification.es_ES
dc.typejournal articlees_ES
dc.type.hasVersionAMes_ES
dspace.entity.typePublication
relation.isAuthorOfPublication5d9e81fc-5f53-42ea-82c8-809b9defd772
relation.isAuthorOfPublication.latestForDiscovery5d9e81fc-5f53-42ea-82c8-809b9defd772

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ijns_tiled_sparse.pdf
Size:
4.19 MB
Format:
Adobe Portable Document Format
Description:

Collections