Dynamic Packet Duplication for Industrial URLLC
Loading...
Identifiers
Publication date
Reading date
Collaborators
Advisors
Tutors
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
MDPI
Share
Department/Institute
Keywords
Abstract
The fifth-generation (5G) network is presented as one of the main options for Industry 4.0 connectivity. To comply with critical messages, 5G offers the Ultra-Reliable and Low latency Communications (URLLC) service category with a millisecond end-to-end delay and reduced probability of failure. There are several approaches to achieve these requirements; however, these come at a cost in terms of redundancy, particularly the solutions based on multi-connectivity, such as Packet Duplication (PD). Specifically, this paper proposes a Machine Learning (ML) method to predict whether PD is required at a specific data transmission to successfully send a URLLC message. This paper is focused on reducing the resource usage with respect to pure static PD. The concept was evaluated on a 5G simulator, comparing between single connection, static PD and PD with the proposed prediction model. The evaluation results show that the prediction model reduced the number of packets sent with PD by 81% while maintaining the same level of latency as a static PD technique, which derives from a more efficient usage of the network resources.
Description
Bibliographic citation
Segura, D.; Khatib, E.J.; Barco, R. Dynamic Packet Duplication for Industrial URLLC. Sensors 2022, 22, 587. https://doi.org/10.3390/s22020587
Collections
Endorsement
Review
Supplemented By
Referenced by
Creative Commons license
Except where otherwised noted, this item's license is described as Atribución 4.0 Internacional











