Bayesian and neural inference on lstm-based object recognition from tactile and kinesthetic information

dc.centroEscuela de Ingenierías Industrialeses_ES
dc.contributor.authorPastor-Martín, Francisco
dc.contributor.authorGarcía-González, Jorge
dc.contributor.authorGandarias, Juan Manuel
dc.contributor.authorMedina, Daniel
dc.contributor.authorClosas, Pau
dc.contributor.authorGarcía-Cerezo, Alfonso José
dc.contributor.authorGómez-de-Gabriel, Jesús Manuel
dc.date.accessioned2025-01-16T13:30:08Z
dc.date.available2025-01-16T13:30:08Z
dc.date.issued2020-11-16
dc.departamentoIngeniería de Sistemas y Automática
dc.description.abstractRecent advances in the field of intelligent robotic manipulation pursue providing robotic hands with touch sensitivity. Haptic perception encompasses the sensing modalities encountered in the sense of touch (e.g., tactile and kinesthetic sensations). This letter focuses on multimodal object recognition and proposes analytical and data-driven methodologies to fuse tactile- and kinesthetic-based classification results. The procedure is as follows: a three-finger actuated gripper with an integrated high-resolution tactile sensor performs squeeze-and-release Exploratory Procedures (EPs). The tactile images and kinesthetic information acquired using angular sensors on the finger joints constitute the time-series datasets of interest. Each temporal dataset is fed to a Long Short-term Memory (LSTM) Neural Network, which is trained to classify in-hand objects. The LSTMs provide an estimation of the posterior probability of each object given the corresponding measurements, which after fusion allows to estimate the object through Bayesian and Neural inference approaches. An experiment with 36-classes is carried out to evaluate and compare the performance of the fused, tactile, and kinesthetic perception systems. The results show that the Bayesian-based classifiers improves capabilities for object recognition and outperforms the Neural-based approach.es_ES
dc.identifier.citationF. Pastor et al., "Bayesian and Neural Inference on LSTM-Based Object Recognition From Tactile and Kinesthetic Information," in IEEE Robotics and Automation Letters, vol. 6, no. 1, pp. 231-238, Jan. 2021, doi: 10.1109/LRA.2020.3038377es_ES
dc.identifier.doi10.1109/LRA.2020.3038377
dc.identifier.urihttps://hdl.handle.net/10630/36432
dc.language.isospaes_ES
dc.publisherIEEEes_ES
dc.rights.accessRightsopen accesses_ES
dc.subjectDetectoreses_ES
dc.subjectRobóticaes_ES
dc.subject.otherDeep learninges_ES
dc.subject.otherFeature extractiones_ES
dc.subject.otherObject recognitiones_ES
dc.subject.otherSensor fusiones_ES
dc.subject.otherTactile sensorses_ES
dc.subject.otherTactile perceptiones_ES
dc.titleBayesian and neural inference on lstm-based object recognition from tactile and kinesthetic informationes_ES
dc.typejournal articlees_ES
dc.type.hasVersionSMURes_ES
dspace.entity.typePublication
relation.isAuthorOfPublication111d26c1-efd3-4b8a-a05b-420a796580e0
relation.isAuthorOfPublicatione12aaab5-66be-4d72-bd9c-36dc69c1f4cf
relation.isAuthorOfPublication.latestForDiscovery111d26c1-efd3-4b8a-a05b-420a796580e0

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
RAL_2020_Tactile_Kinesthetic_Fusion_for_Perception_arxiv.pdf
Size:
1.13 MB
Format:
Adobe Portable Document Format
Description:

Collections