High-Throughput FPGA Implementation of QR Decomposition

Loading...
Thumbnail Image

Identifiers

Publication date

Reading date

Collaborators

Advisors

Tutors

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Metrics

Google Scholar

Share

Research Projects

Organizational Units

Journal Issue

Department/Institute

Abstract

This brief presents a hardware design to achieve high-throughput QR decomposition, using Givens Rotation Method. It utilizes a new two-dimensional systolic array architecture with pipelined processing elements, which are based on the COordinate Rotation DIgital Computer (CORDIC) algorithm. CORDIC computes vector rotations through shifts and additions. This approach allows a continuous computation of QR factorizations with simple hardware. A fixed-point FPGA architecture for 4 x 4 matrices has been optimized by balancing the number of CORDIC iterations with the final error. As a result, compared to other previous proposals for FPGA, our design achieves at least 50% more throughput, and much less resource utilization.

Description

Munoz, S.D.; Hormigo, J. "High-Throughput FPGA Implementation of QR Decomposition" IEEE Transactions on in Circuits and Systems II: Express Briefs,vol.62, no.9, pp.861-865, Sept. 2015 doi: 10.1109/TCSII.2015.2435753

Bibliographic citation

Collections

Endorsement

Review

Supplemented By

Referenced by