Protolysis Reaction on Pyrophyllite Surface Molecular Models: A DFT Study

dc.centroFacultad de Cienciases_ES
dc.contributor.authorBentabol-Manzanares, María José
dc.contributor.authorPérez del Valle, Carlos
dc.contributor.authorHernández Laguna, Alfonso
dc.contributor.authorHuertas, F. Javier
dc.date.accessioned2025-11-27T10:56:50Z
dc.date.available2025-11-27T10:56:50Z
dc.date.issued2025-11-24
dc.departamentoQuímica Inorgánica, Cristalografía y Mineralografíaes_ES
dc.description.abstractUnderstanding the mechanisms of mineral dissolution at the atomic scale is crucial for interpreting geochemical processes in soils and sediments, particularly those involving clay minerals. This study addresses the dissolution of pyrophyllite, a model dioctahedral phyllosilicate, under acidic conditions by employing Density Functional Theory (DFT) to simulate protolysis reactions at four distinct edge surfaces ({100}, {010}, {110}, and {130}). Molecular cluster models were constructed for each edge, and the interactions of protons and hydronium ions with various oxygen sites were systematically analyzed. The results demonstrate that bridge oxygens, especially those coordinated to one silicon and two aluminum atoms, are the most reactive sites, undergoing significant bond breaking and structural distortion upon protonation, while hydroxyl groups mainly accommodate structural changes without initiating dissolution. The {110} edge was found to be the least reactive, whereas the {100}, {010}, and {130} edges exhibited the highest reactivity. Hydronium ions produced similar or greater structural changes compared to protons, with water molecules forming hydrogen bonds with the resulting structures. These findings confirm that protonation of bridge oxygens is the rate-limiting step in phyllosilicate dissolution, and that octahedral cations are released preferentially over tetrahedral ones. These findings are consistent with the conclusions drawn from the dissolution experiments. This study provides atomistic information on the dissolution mechanisms of clay minerals at a scale that exceeds the capabilities of dissolution experiments, emphasizing the importance of edge reactivity relative to extensive basal surfaces and the role of water in proton transfer and facilitating protolysis reactions.es_ES
dc.identifier.citationBentabol, M., Pérez del Valle, C., Hernández-Laguna, A., & Huertas, F. J. (2025). Protolysis Reaction on Pyrophyllite Surface Molecular Models: A DFT Study. Molecules, 30(23), 4530. https://doi.org/10.3390/molecules30234530es_ES
dc.identifier.doi10.3390/molecules30234530
dc.identifier.urihttps://hdl.handle.net/10630/40925
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.relation.projectIDPID2020-114355GB-I00es_ES
dc.relation.projectIDPID2023-146856NB-I00es_ES
dc.rights.accessRightsopen accesses_ES
dc.subjectPirofilita - Aspectos moleculareses_ES
dc.subjectQuímica organometálicaes_ES
dc.subject.otherDFTes_ES
dc.subject.otherPyrophyllitees_ES
dc.subject.otherMolecular surface modelses_ES
dc.subject.otherProtolysis reaction modelses_ES
dc.subject.otherAcid dissolution mechanismes_ES
dc.subject.otherSurface reactivityes_ES
dc.titleProtolysis Reaction on Pyrophyllite Surface Molecular Models: A DFT Studyes_ES
dc.typejournal articlees_ES
dc.type.hasVersionVoRes_ES
dspace.entity.typePublication
relation.isAuthorOfPublicationf1fe578d-c950-412c-af04-153aefd5592b
relation.isAuthorOfPublication.latestForDiscoveryf1fe578d-c950-412c-af04-153aefd5592b

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
molecules-30-04530-v2.pdf
Size:
6.83 MB
Format:
Adobe Portable Document Format
Description:

Collections