Scalable approach for high-resolution land cover: a case study in the Mediterranean Basin.

dc.centroE.T.S.I. Informáticaes_ES
dc.contributor.authorBurgueño Romero, Antonio Manuel
dc.contributor.authorAldana Martín, José Francisco
dc.contributor.authorVázquez-Pendón, María
dc.contributor.authorBarba-González, Cristóbal
dc.contributor.authorJiménez-Gómez, Yaiza
dc.contributor.authorGarcía Millán, Virginia
dc.contributor.authorNavas-Delgado, Ismael
dc.date.accessioned2024-02-23T12:51:42Z
dc.date.available2024-02-23T12:51:42Z
dc.date.issued2023-06-02
dc.departamentoInstituto de Tecnología e Ingeniería del Software de la Universidad de Málaga
dc.description.abstractThe production of land cover maps is an everyday use of image classification applications on remote sensing. However, managing Earth observation satellite data for a large region of interest is challenging in the task of creating land cover maps. Since satellite imagery is getting more precise and extensive, Big Data techniques are becoming essential to handle the rising quantity of data. Furthermore, given the complexity of managing and analysing the data, defining a methodology that reduces the complexity of the process into different smaller steps is vital to data processing. This paper presents a Big Data methodology for creating land cover maps employing artificial intelligence algorithms. Machine Learning algorithms are contemplated for remote sensing and geodata classification, supported by explainable artificial intelligence. Furthermore, the process considers aspects related to downloading data from different satellites, Copernicus and ASTER, executing the pre-processing and processing of the data in a distributed environment, and depicting the visualisation of the result. The methodology is validated in a test case for er map of the Mediterranean Basin.es_ES
dc.description.sponsorshipPID2020-112540RB-C41, MCIN/AEI/10.13039/501100011033,PRE2021-098594, LIFEWATCH-2019-11-UMA-4es_ES
dc.identifier.citationBurgueño, A. M., Aldana-Martín, J. F., Vázquez-Pendón, M., Barba-González, C., Jiménez Gómez, Y., García Millán, V., & Navas-Delgado, I. (2023). Scalable approach for high-resolution land cover: a case study in the Mediterranean Basin. Journal of Big Data, 10(1), 1-22.https://doi.org/10.1186/s40537-023-00770-zes_ES
dc.identifier.doi10.1186/s40537-023-00770-z
dc.identifier.urihttps://hdl.handle.net/10630/30638
dc.language.isoenges_ES
dc.publisherSpringer Naturees_ES
dc.rightsAttribution 4.0 Internacional
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectAprendizaje automático (Inteligencia artificial)es_ES
dc.subjectÁrboles de decisiónes_ES
dc.subjectSuelo - Uso - Proceso de datoses_ES
dc.subject.otherUso sueloes_ES
dc.subject.otherBig Dataes_ES
dc.subject.otherLand coveres_ES
dc.subject.otherWorkfowes_ES
dc.subject.otherExplainable AIes_ES
dc.subject.otherRemote sensinges_ES
dc.subject.otherMultispectrales_ES
dc.subject.otherMachine learninges_ES
dc.subject.otherRandom forestses_ES
dc.subject.otherSentinel-2es_ES
dc.titleScalable approach for high-resolution land cover: a case study in the Mediterranean Basin.es_ES
dc.typejournal articlees_ES
dc.type.hasVersionVoRes_ES
dspace.entity.typePublication
relation.isAuthorOfPublicatione8971462-20b8-442f-aeea-797c6233b905
relation.isAuthorOfPublication4e298ef9-8825-4aa8-be87-ac0f8adbf1b7
relation.isAuthorOfPublication.latestForDiscoverye8971462-20b8-442f-aeea-797c6233b905

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s40537-023-00770z.pdf
Size:
2.49 MB
Format:
Adobe Portable Document Format
Description:

Collections