BIGOWL: Knowledge centered Big Data analytics

dc.centroE.T.S.I. Informáticaes_ES
dc.contributor.authorBarba-González, Cristóbal
dc.contributor.authorGarcía-Nieto, José Manuel
dc.contributor.authorRoldán-García, María del Mar
dc.contributor.authorNavas-Delgado, Ismael
dc.contributor.authorNebro-Urbaneja, Antonio Jesús
dc.contributor.authorAldana-Montes, José Francisco
dc.date.accessioned2025-01-16T13:42:07Z
dc.date.available2025-01-16T13:42:07Z
dc.date.issued2018-08-23
dc.departamentoInstituto de Tecnología e Ingeniería del Software de la Universidad de Málaga
dc.description.abstractKnowledge extraction and incorporation is currently considered to be beneficial for efficient Big Data analytics. Knowledge can take part in workflow design, constraint definition, parameter selection and configuration, human interactive and decision-making strategies. This paper proposes BIGOWL, an ontology to support knowledge management in Big Data analytics. BIGOWL is designed to cover a wide vocabulary of terms concerning Big Data analytics workflows, including their components and how they are connected, from data sources to the analytics visualization. It also takes into consideration aspects such as parameters, restrictions and formats. This ontology defines not only the taxonomic relationships between the different concepts, but also instances representing specific individuals to guide the users in the design of Big Data analytics workflows. For testing purposes, two case studies are developed, which consists in: first, real-world streaming processing with Spark of traffic Open Data, for route optimization in urban environment of New York city; and second, data mining classification of an academic dataset on local/cloud platforms. The analytics workflows resulting from the BIGOWL semantic model are validated and successfully evaluated.es_ES
dc.identifier.citationBarba-González, C., García-Nieto, J., del Mar Roldán-García, M., Navas-Delgado, I., Nebro, A. J., & Aldana-Montes, J. F. (2019). BIGOWL: Knowledge centered big data analytics. Expert Systems with Applications, 115, 543-556.es_ES
dc.identifier.doi10.1016/j.eswa.2018.08.026
dc.identifier.urihttps://hdl.handle.net/10630/36436
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAtribución-NoComercial 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.subjectOntologíaes_ES
dc.subject.otherBig Dataes_ES
dc.subject.otherSemánticaes_ES
dc.subject.otherExtracción de conocimientoes_ES
dc.titleBIGOWL: Knowledge centered Big Data analyticses_ES
dc.typejournal articlees_ES
dc.type.hasVersionAMes_ES
dspace.entity.typePublication
relation.isAuthorOfPublicatione8971462-20b8-442f-aeea-797c6233b905
relation.isAuthorOfPublication04a9ec70-bfda-4089-b4d7-c24dd0870d17
relation.isAuthorOfPublicationc7a2379c-5fc9-4e25-a93b-7a5a01daab69
relation.isAuthorOfPublication4e298ef9-8825-4aa8-be87-ac0f8adbf1b7
relation.isAuthorOfPublicationeddeb2e3-acaf-483e-bb13-cebb22c18413
relation.isAuthorOfPublication7eac9d6a-0152-4268-8207-ea058c82e531
relation.isAuthorOfPublication.latestForDiscoverye8971462-20b8-442f-aeea-797c6233b905

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
BIGOWL.pdf
Size:
2.35 MB
Format:
Adobe Portable Document Format
Description:

Collections