Content Based Image Retrieval by Convolutional Neural Networks
| dc.centro | E.T.S.I. Informática | en_US |
| dc.contributor.author | Hamreras, Safa | |
| dc.contributor.author | Benítez-Rochel, Rafaela | |
| dc.contributor.author | Boucheham, Bachir | |
| dc.contributor.author | Molina-Cabello, Miguel Ángel | |
| dc.contributor.author | López-Rubio, Ezequiel | |
| dc.date.accessioned | 2019-06-07T08:15:07Z | |
| dc.date.available | 2019-06-07T08:15:07Z | |
| dc.date.created | 2019 | |
| dc.date.issued | 2019-06-07 | |
| dc.departamento | Lenguajes y Ciencias de la Computación | |
| dc.description | Hamreras S., Benítez-Rochel R., Boucheham B., Molina-Cabello M.A., López-Rubio E. (2019) Content Based Image Retrieval by Convolutional Neural Networks. In: Ferrández Vicente J., Álvarez-Sánchez J., de la Paz López F., Toledo Moreo J., Adeli H. (eds) From Bioinspired Systems and Biomedical Applications to Machine Learning. IWINAC 2019. Lecture Notes in Computer Science, vol 11487. Springer. | en_US |
| dc.description.abstract | In this paper, we present a Convolutional Neural Network (CNN) for feature extraction in Content based Image Retrieval (CBIR). The proposed CNN aims at reducing the semantic gap between low level and high-level features. Thus, improving retrieval results. Our CNN is the result of a transfer learning technique using Alexnet pretrained network. It learns how to extract representative features from a learning database and then uses this knowledge in query feature extraction. Experimentations performed on Wang (Corel 1K) database show a significant improvement in terms of precision over the state of the art classic approaches. | en_US |
| dc.description.sponsorship | Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. | en_US |
| dc.identifier.uri | https://hdl.handle.net/10630/17778 | |
| dc.language.iso | eng | en_US |
| dc.relation.eventdate | Junio de 2019 | en_US |
| dc.relation.eventplace | Almería, España | en_US |
| dc.relation.eventtitle | 8th International Work-Conference on the Interplay between Natural and Artificial Computation | en_US |
| dc.rights.accessRights | open access | en_US |
| dc.subject | Computación, Teoría de la | en_US |
| dc.subject | Informática | en_US |
| dc.subject.other | content based retrieval | en_US |
| dc.subject.other | image processing | en_US |
| dc.subject.other | convolutional neural networks | en_US |
| dc.title | Content Based Image Retrieval by Convolutional Neural Networks | en_US |
| dc.type | book part | es_ES |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | 6280dc3f-86b0-49c7-9979-9d2e9e9f8e22 | |
| relation.isAuthorOfPublication | bd8d08dc-ffee-4da1-9656-28204211eb1a | |
| relation.isAuthorOfPublication | ae409266-06a3-4cd4-84e8-fb88d4976b3f | |
| relation.isAuthorOfPublication.latestForDiscovery | 6280dc3f-86b0-49c7-9979-9d2e9e9f8e22 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Content_Based_Image_Retrieval_by_Convolutional_Neural_Networks.pdf
- Size:
- 867.46 KB
- Format:
- Adobe Portable Document Format
- Description:

