Data mining and statistical techniques for characterizing the performance of thin-film photovoltaic modules

dc.centroE.T.S.I. Telecomunicaciónes_ES
dc.contributor.authorMoreno-Sáez, Rafael
dc.contributor.authorSidrach-de-Cardona, Mariano
dc.contributor.authorMora-López, Llanos
dc.date.accessioned2024-09-20T09:48:57Z
dc.date.available2024-09-20T09:48:57Z
dc.date.issued2013
dc.departamentoTecnología Electrónica
dc.description.abstractA method for characterizing the performance ratio of thin-film photovoltaic modules based on the use of data mining and statistical techniques is developed. In general, this parameter changes when modules are working in outdoor conditions depending on irradiance, temperature, air mass and solar spectral irradiance distribution. The problem is that it is usually difficult to know how to include solar spectral irradiance information when estimating the performance of photovoltaic modules. We propose five different solar spectral irradiance distributions that summarize all the different distributions observed in Malaga. Using the probability distribution functions of these curves and a statistical test, we first checked when two spectral distributions measured can be considered to have the same contribution of energy per wavelength. Hence, using this test and the k-means data mining technique, all the measured spectra, more than two hundred and fifty thousand, are clustered in only five different groups. All the spectra in each cluster can be considered as equal and the k-means technique estimates one centroid for each cluster that corresponds to the cumulative probability distribution function that is the most similar to the rest of the samples in the cluster. The results obtained proves that 99.98% of the functions can be considered equal to the centroid of its cluster. With these five types of functions, we have explained the changes in the performance ratio measured for thin-film photovoltaic modules of different technologies.es_ES
dc.description.sponsorshipThis work has been supported by the projects P10-TIC-6441 and P11-RNM-07115 of the Junta de Andalucía, Spain.es_ES
dc.identifier.citationRafael Moreno Sáez, Mariano Sidrach-de-Cardona, Llanos Mora-López, Data mining and statistical techniques for characterizing the performance of thin-film photovoltaic modules, Expert Systems with Applications, Volume 40, Issue 17, 2013, Pages 7141-7150, ISSN 0957-4174, https://doi.org/10.1016/j.eswa.2013.06.059.es_ES
dc.identifier.doihttps://doi.org/10.1016/j.eswa.2013.06.059
dc.identifier.issn0957-4174
dc.identifier.urihttps://hdl.handle.net/10630/32722
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rights.accessRightsopen accesses_ES
dc.subjectMinería de datoses_ES
dc.subjectCélulas solareses_ES
dc.subject.otherSolar spectral distributiones_ES
dc.subject.otherPhotovoltaic moduleses_ES
dc.subject.otherPerformance ratioes_ES
dc.subject.otherStatistical modelses_ES
dc.titleData mining and statistical techniques for characterizing the performance of thin-film photovoltaic moduleses_ES
dc.typejournal articlees_ES
dc.type.hasVersionVoRes_ES
dspace.entity.typePublication
relation.isAuthorOfPublicationa0130eca-3f27-4c80-8627-8ca1fa6d488e
relation.isAuthorOfPublication.latestForDiscoverya0130eca-3f27-4c80-8627-8ca1fa6d488e

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
(Moreno-Saez 2013)Data mining and statistical techniques for characterizing the performance of thin-film photovoltaic modules.pdf
Size:
733.58 KB
Format:
Adobe Portable Document Format
Description:

Collections