Photovoltaic energy prediction using machine learning techniques.
| dc.centro | E.T.S.I. Informática | es_ES |
| dc.contributor.author | Surribas Sayago, Gonzalo | |
| dc.contributor.author | Fernández-Rodríguez, Jose David | |
| dc.contributor.author | Domínguez-Merino, Enrique | |
| dc.date.accessioned | 2023-05-09T08:42:21Z | |
| dc.date.available | 2023-05-09T08:42:21Z | |
| dc.date.created | 2023 | |
| dc.date.issued | 2023 | |
| dc.departamento | Lenguajes y Ciencias de la Computación | |
| dc.description.abstract | Solar energy is becoming one of the most promising power sources in residential, commercial, and industrial applications. Solar photovoltaic (PV) facilities use PV cells that convert solar irradiation into electric power. PV cells can be used in either standalone or grid-connected systems to supply power for home appliances, lighting, and commercial and industrial equipment. Managing uncertainty and fluctuations in energy production is a key challenge in integrating PV systems into power grids and using them as steady, standalone power sources. For this reason, it is very important to forecast solar energy power output. In this paper, we analyze and compare various methods to predict the production of photovoltaic energy for individual installations and network areas around the world, using statistical methods for time series and different machine learning techniques. | es_ES |
| dc.description.sponsorship | Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. | es_ES |
| dc.identifier.uri | https://hdl.handle.net/10630/26525 | |
| dc.language.iso | eng | es_ES |
| dc.relation.eventdate | Junio 2023 | es_ES |
| dc.relation.eventplace | Azores | es_ES |
| dc.relation.eventtitle | IWANN 2023 | es_ES |
| dc.rights.accessRights | open access | es_ES |
| dc.subject | Energía fotovoltaica - Generación | es_ES |
| dc.subject | Energía solar | es_ES |
| dc.subject | Aprendizaje automático (Inteligencia artificial) | es_ES |
| dc.subject.other | Forecasting | es_ES |
| dc.subject.other | Photovoltaic energy | es_ES |
| dc.subject.other | Machine learning | es_ES |
| dc.title | Photovoltaic energy prediction using machine learning techniques. | es_ES |
| dc.type | conference output | es_ES |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | ee99eb5a-8e94-462f-9bea-2da1832bedcf | |
| relation.isAuthorOfPublication.latestForDiscovery | ee99eb5a-8e94-462f-9bea-2da1832bedcf |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- IWANN_2023_Springer_Lecture_Notes_in_Computer_Science.pdf
- Size:
- 862.99 KB
- Format:
- Adobe Portable Document Format
- Description:

