Photovoltaic energy prediction using machine learning techniques.

dc.centroE.T.S.I. Informáticaes_ES
dc.contributor.authorSurribas Sayago, Gonzalo
dc.contributor.authorFernández-Rodríguez, Jose David
dc.contributor.authorDomínguez-Merino, Enrique
dc.date.accessioned2023-05-09T08:42:21Z
dc.date.available2023-05-09T08:42:21Z
dc.date.created2023
dc.date.issued2023
dc.departamentoLenguajes y Ciencias de la Computación
dc.description.abstractSolar energy is becoming one of the most promising power sources in residential, commercial, and industrial applications. Solar photovoltaic (PV) facilities use PV cells that convert solar irradiation into electric power. PV cells can be used in either standalone or grid-connected systems to supply power for home appliances, lighting, and commercial and industrial equipment. Managing uncertainty and fluctuations in energy production is a key challenge in integrating PV systems into power grids and using them as steady, standalone power sources. For this reason, it is very important to forecast solar energy power output. In this paper, we analyze and compare various methods to predict the production of photovoltaic energy for individual installations and network areas around the world, using statistical methods for time series and different machine learning techniques.es_ES
dc.description.sponsorshipUniversidad de Málaga. Campus de Excelencia Internacional Andalucía Tech.es_ES
dc.identifier.urihttps://hdl.handle.net/10630/26525
dc.language.isoenges_ES
dc.relation.eventdateJunio 2023es_ES
dc.relation.eventplaceAzoreses_ES
dc.relation.eventtitleIWANN 2023es_ES
dc.rights.accessRightsopen accesses_ES
dc.subjectEnergía fotovoltaica - Generaciónes_ES
dc.subjectEnergía solares_ES
dc.subjectAprendizaje automático (Inteligencia artificial)es_ES
dc.subject.otherForecastinges_ES
dc.subject.otherPhotovoltaic energyes_ES
dc.subject.otherMachine learninges_ES
dc.titlePhotovoltaic energy prediction using machine learning techniques.es_ES
dc.typeconference outputes_ES
dspace.entity.typePublication
relation.isAuthorOfPublicationee99eb5a-8e94-462f-9bea-2da1832bedcf
relation.isAuthorOfPublication.latestForDiscoveryee99eb5a-8e94-462f-9bea-2da1832bedcf

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
IWANN_2023_Springer_Lecture_Notes_in_Computer_Science.pdf
Size:
862.99 KB
Format:
Adobe Portable Document Format
Description: