The problem of living in the sea: the uptake of inorganic carbon and nutrients in Posidonia oceanica (L.) Delile
Loading...
Identifiers
Publication date
Reading date
Collaborators
Advisors
Tutors
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Share
Center
Department/Institute
Keywords
Abstract
The genus Posidonia exhibits a peculiar geographical distribution. It is composed by nine species, eight of which are distributed along the Australian coasts and only one, Posidonia oceanica (L.) Delile, is a Mediterranean endemism. Like other angiosperms, P. oceanica has adapted secondarily to the marine environment, and has developed anew mechanisms to face a liquid and alkaline medium (pH 8.2) that contains a high salt concentration (0.5 M NaCl). The liquid environment limits the diffusive flow of CO2 and nutrients and, furthermore, CO2 dissolves in water and forms HCO3-, the more abundant chemical species of inorganic carbon at pH 8.2.
Like other green plants P. oceanica uses CO2 for photosynthesis. In addition, this species shows a transport system in the plasma membrane for the direct uptake of HCO3-, that uses H+ as the driving ion. The addition of HCO3- provokes a transient hyperpolarization of the plasma membrane followed by a depolarization; at the same time, the cytosolic pH (pHc) becomes transiently acidic and next it gets alkaline, and remains alkaline throughout the HCO3- pulse. The alkalinization of the pHc is due to the cytosolic accumulation of HCO3- and OH- and it is sensitive to the addition of ethoxyzolamide, an inhibitor of the internal carbonic anhydrase. The increase of negative charges in the cytosol triggers the release of Cl- to recover the values of the resting membrane potential. The plasmalemma of P. oceanica exhibits a reduced Na+ permeability and shows a H+/Na+ antiporter activity that keeps low and relatively constant the cytosolic Na+ concentration (17 mM Na+). The inside negative membrane potential (-178 mV) and the low [Na+]c generate a tremendous Na+-motive force that this plant uses for the high affinity transport of NO3- (Km= 21 µM), and of the amino acids alanine (Km= 37 µM) and cysteine (Km= 10 µM). The uptake of these compounds shows a strict dependence on the presence of Na+ in the medium. Moreover, the addition of micromolar concentrations of NO3-, alanine or cysteine gives rise to millimolar increments of [Na+]c. Experiments with external LIX pH mini-electrodes show that the uptake of glucose is not Na+ but H+ dependent. Thus, the model for the ion transport energization in this species seems to be mixed, with a H+-ATPase as the primary pump and a series of carriers that use H+ (HCO3-, Na+, glucose) or Na+ (NO3-, amino acids) as the driving ion.
Project Funding: CTM 2011-30356 (MEC)












