Predicción del rendimiento en redes celulares con segmentación.

dc.centroE.T.S.I. Telecomunicaciónes_ES
dc.contributor.authorVillegas Martín, José Antonio
dc.contributor.authorGijón-Martín, Carolina
dc.contributor.authorToril-Genovés, Matías
dc.contributor.authorLuna-Ramírez, Salvador
dc.contributor.authorFernández-Navarro, Mariano
dc.date.accessioned2023-09-21T06:02:31Z
dc.date.available2023-09-21T06:02:31Z
dc.date.created2023
dc.date.issued2023
dc.departamentoIngeniería de Comunicaciones
dc.description.abstractIn 5G and beyond systems, Network Slicing (NS) enables the deployment of multiple logical networks customized for specific verticals over a common physical infrastructure. In the radio access network, mobile operators need models to forecast slice performance for an efficient and proactive slice redimensioning. This task has not been addressed yet due to the absence of public datasets from live 5G networks with NS comprising historical measurements of Key Performance Indicators (KPIs) collected on a slice basis to test on. This work presents, a slice-level KPI dataset created with a dynamic system-level simulator that emulates the activity of a realistic 5G network with NS. The dataset comprises historical measurements for several KPIs collected per cell and slice for 15 minutes of network activity. Then, a thorough analysis of the dataset is presented considering correlation- and seasonality-related features, aiming to characterize slice-level KPI time series for different slices and data aggregation resolutions. Results have shown that some key aspects for designing slice-level forecasting models (e.g., seasonal KPI behavior or relationship among KPIs) strongly depend on slice and data time resolution. Slice-specific multi-KPI forecasting models with automatic seasonality detection are expected to achieve the best performancees_ES
dc.description.sponsorshipUniversidad de Málaga. Campus de Excelencia Internacional Andalucía Tech.es_ES
dc.identifier.urihttps://hdl.handle.net/10630/27616
dc.language.isospaes_ES
dc.relation.eventdateseptiembre 2023es_ES
dc.relation.eventplaceCáceres (España)es_ES
dc.relation.eventtitleURSI 2023es_ES
dc.rights.accessRightsopen accesses_ES
dc.subjectSistemas de comunicaciones inalámbricoses_ES
dc.subjectRedes de banda anchaes_ES
dc.subject.otherPredicciónes_ES
dc.subject.otherSegmentaciónes_ES
dc.subject.otherRedes celulareses_ES
dc.titlePredicción del rendimiento en redes celulares con segmentación.es_ES
dc.typeconference outputes_ES
dspace.entity.typePublication
relation.isAuthorOfPublication014c95aa-41da-4fb1-b41d-1e297ff0ecb6
relation.isAuthorOfPublicationc062c7f9-a73f-4f6e-8d25-d8258916a967
relation.isAuthorOfPublication863517d2-d026-40b0-a009-84c252d078f6
relation.isAuthorOfPublication.latestForDiscovery014c95aa-41da-4fb1-b41d-1e297ff0ecb6

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
JoseAntonioVillegas_riuma.pdf
Size:
11.47 KB
Format:
Adobe Portable Document Format
Description: