Propagating Uncertainty in Urban Tree Trait Measurements to Estimate Socioeconomic Inequities in Ecosystem Service Accessibility: A Machine Learning and Simulation Framework.

dc.centroFacultad de Cienciases_ES
dc.contributor.authorPereña-Ortiz, Jaime Francisco
dc.contributor.authorSalvo-Tierra, Ángel Enrique
dc.contributor.authorCozano-Pérez, Pablo
dc.contributor.authorRuiz-Valero, Ángel
dc.date.accessioned2025-08-27T11:52:57Z
dc.date.available2025-08-27T11:52:57Z
dc.date.issued2025-08-20
dc.departamentoBotánica y Fisiología Vegetales_ES
dc.description.abstractAchieving Sustainable Development Goal 11 requires addressing inequities in access to ecosystem services provided by urban trees to ensure a fair distribution of environmental benefits across socioeconomic groups. Ecosystem services estimates based on urban forest inventories often face challenges related to missing data or traits recorded in numerical ranges. Measurement-level uncertainty, if unaccounted for, can lead to overly optimistic estimates and limit their utility for urban planning. This study presents a methodological framework for propagating uncertainty in ecosystem services estimation with i-Tree. The approach integrates machine learning models to impute missing data and employs copulas and Monte Carlo simulations to assess the impact of trait uncertainty on provision. These simulations are further incorporated into Bayesian Hierarchical Models to evaluate how trait uncertainty influences estimates of inequities in ecosystem services accessibility across socioeconomic groups at the census tract level. Results indicate substantial uncertainty in tree-level estimates, which decreases with increasing spatial scale due to the central limit theorem. Model findings reveal inequities in benefits accessibility across social groups, even after accounting for census tract tree density, unobserved covariates and spatial autocorrelation via random effects, and tree trait uncertainty. Higher-income areas with greater income inequality and lower proportions of minority ethnic populations tend to have greater access to ecosystem services. This study provides a replicable methodology applicable to urban tree inventories with similar data limitations and offers urban planners an analytical tool for designing targeted tree-planting strategies that promote equitable ecosystem services provision distribution and foster healthier, more resilient urban communities.es_ES
dc.identifier.citationPereña-Ortiz, J.F., Salvo-Tierra, Á.E., Cozano-Pérez, P., Ruiz-Valero, Á., Propagating Uncertainty in Urban Tree Trait Measurements to Estimate Socioeconomic Inequities in Ecosystem Service Accessibility: A Machine Learning and Simulation Framework, Environmental and Sustainability Indicators, https://doi.org/10.1016/j.indic.2025.100864.es_ES
dc.identifier.doi10.1016/j.indic.2025.100864
dc.identifier.urihttps://hdl.handle.net/10630/39664
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectÁrboles de ciudades_ES
dc.subjectFlora urbanaes_ES
dc.subjectAprendizaje automático (Inteligencia artificial)es_ES
dc.subjectEcología - Aspectos económicoses_ES
dc.subjectEstadística bayesianaes_ES
dc.subject.otherBayesian hierarchical modelses_ES
dc.subject.otherecosystem-serviceses_ES
dc.subject.otherenvironmental-justicees_ES
dc.subject.othermachine-learninges_ES
dc.subject.otherurban-forestryes_ES
dc.titlePropagating Uncertainty in Urban Tree Trait Measurements to Estimate Socioeconomic Inequities in Ecosystem Service Accessibility: A Machine Learning and Simulation Framework.es_ES
dc.typejournal articlees_ES
dc.type.hasVersionVoRes_ES
dspace.entity.typePublication
relation.isAuthorOfPublication6a563698-18c0-4438-bcac-082fa40229e8
relation.isAuthorOfPublication656aa2b6-ff7e-45e5-bbfe-8f7c2babfa8a
relation.isAuthorOfPublication.latestForDiscovery6a563698-18c0-4438-bcac-082fa40229e8

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1-s2.0-S2665972725002855-main.pdf
Size:
3.52 MB
Format:
Adobe Portable Document Format
Description:

Collections