Efficient Activity Recognition in Smart Homes Using Delayed Fuzzy Temporal Windows on Binary Sensors.

dc.centroE.T.S.I. Informáticaes_ES
dc.contributor.authorRebeen, Hamad
dc.contributor.authorSalguero-Hidalgo, Alberto Gabriel
dc.contributor.authorBouguelia, Mohamed-Rafik
dc.contributor.authorEspinilla-Estévez, Macarena
dc.contributor.authorMedina-Quero, Javier
dc.contributor.editorFotiadiis, Dimitrions
dc.date.accessioned2024-11-27T12:48:18Z
dc.date.available2024-11-27T12:48:18Z
dc.date.issued2019
dc.departamentoLenguajes y Ciencias de la Computación
dc.descriptionPolítica de acceso abierto tomada de: https://openpolicyfinder.jisc.ac.uk/id/publication/36844es_ES
dc.description.abstractHuman activity recognition has become an active research field over the past few years due to its wide application in various fields such as health-care, smart home monitoring, and surveillance. Existing approaches for activity recognition in smart homes have achieved promising results. Most of these approaches evaluate real-time recognition of activities using only sensor activations that precede the evaluation time (where the decision is made). However, in several critical situations, such as diagnosing people with dementia, “preceding sensor activations” are not always sufficient to accurately recognize the inhabitant's daily activities in each evaluated time. To improve performance, we propose a method that delays the recognition process in order to include some sensor activations that occur after the point in time where the decision needs to be made. For this, the proposed method uses multiple incremental fuzzy temporal windows to extract features from both preceding and some oncoming sensor activations. The proposed method is evaluated with two temporal deep learning models (convolutional neural network and long short-term memory), on a binary sensor dataset of real daily living activities. The experimental evaluation shows that the proposed method achieves significantly better results than the real-time approach, and that the representation with fuzzy temporal windows enhances performance within deep learning models.es_ES
dc.description.sponsorshipMarie Sklodowska-Curie EU Framework for Research Innovation Horizon 2020 (Grant Number: 734355)es_ES
dc.identifier.citationHamad, R. A., Hidalgo, A. S., Bouguelia, M. R., Estevez, M. E., & Quero, J. M. (2019). Efficient activity recognition in smart homes using delayed fuzzy temporal windows on binary sensors. IEEE journal of biomedical and health informatics, 24(2), 387-395.es_ES
dc.identifier.doi10.1109/JBHI.2019.2918412
dc.identifier.issn2168-2194
dc.identifier.urihttps://hdl.handle.net/10630/35358
dc.language.isoenges_ES
dc.publisherIEEEes_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectDomóticaes_ES
dc.subjectReconocimiento de formases_ES
dc.subject.otherSmart homees_ES
dc.subject.otherActivity classificationes_ES
dc.subject.otherFuzzyes_ES
dc.subject.otherArtificial intelligencees_ES
dc.titleEfficient Activity Recognition in Smart Homes Using Delayed Fuzzy Temporal Windows on Binary Sensors.es_ES
dc.typejournal articlees_ES
dc.type.hasVersionAMes_ES
dspace.entity.typePublication
relation.isAuthorOfPublication55b1fcd0-5773-4338-aee4-f06c4b117d61
relation.isAuthorOfPublication.latestForDiscovery55b1fcd0-5773-4338-aee4-f06c4b117d61

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Efficient_activity_recognition_in_smart_homes_using_delayed_fuzzy_temporal_windows_on_binary_sensors.pdf
Size:
630.04 KB
Format:
Adobe Portable Document Format
Description:

Collections