Automatic identification of characteristic points related to pathologies in electrocardiograms to design expert systems

dc.centroEscuela de Ingenierías Industrialeses_ES
dc.contributor.authorPeláez Sánchez, José Ignacio
dc.contributor.authorGómez-Ruiz, José Antonio
dc.contributor.authorFornari, Javier
dc.contributor.authorVaccaro-Witt, Gustavo Fabian
dc.date.accessioned2024-01-16T11:08:39Z
dc.date.available2024-01-16T11:08:39Z
dc.date.issued2019
dc.departamentoLenguajes y Ciencias de la Computación
dc.description.abstractElectrocardiograms (ECG) record the electrical activity of the heart through 12 main signals called shunts. Medical experts examine certain segments of these signals in where they believe the cardiovascular disease is manifested. This fact is an important determining factor for designing expert systems for cardiac diagnosis, as it requires the direct expert opinion in order to locate these specific segments in the ECG. The main contributions of this paper are: (i) to propose a model that uses the full ECG signal to identify key characteristic points that define cardiac pathology without medical expert intervention and (ii) to present an expert system based on artificial neural networks capable of detecting bundle branch block disease using the previous approach. Cardiologists have validated the proposed model application and a comparative analysis is performed using the MIT-BIH arrhythmia database.es_ES
dc.description.sponsorshipSpanish project TSI-020302-2010-136 University of Málaga: 81434547001-3es_ES
dc.identifier.citationSoft Computing. Vol. 23(12): 4207-4219. 2019es_ES
dc.identifier.doi10.1007/s00500-018-3070-8
dc.identifier.urihttps://hdl.handle.net/10630/28772
dc.language.isoenges_ES
dc.publisherSpringer-Verlages_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectElectrocardiografíaes_ES
dc.subject.otherECGes_ES
dc.subject.otherBundle branch blockses_ES
dc.subject.otherMedical diagnosises_ES
dc.subject.otherMultilayer perceptrones_ES
dc.subject.otherCardiovascular diseasees_ES
dc.titleAutomatic identification of characteristic points related to pathologies in electrocardiograms to design expert systemses_ES
dc.typejournal articlees_ES
dc.type.hasVersionAMes_ES
dspace.entity.typePublication
relation.isAuthorOfPublication143621cc-fd1e-44a3-9ec2-c0870aa930e2
relation.isAuthorOfPublication.latestForDiscovery143621cc-fd1e-44a3-9ec2-c0870aa930e2

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Soft_computing_2019_2.pdf
Size:
621.49 KB
Format:
Adobe Portable Document Format
Description:

Collections