Conformal Geometry versus Riemannian Geometry

dc.centroEscuela Politécnica Superiores_ES
dc.contributor.authorLeitner, Felipe
dc.date.accessioned2014-02-05T12:48:14Z
dc.date.available2014-02-05T12:48:14Z
dc.date.issued2014-02-05
dc.departamentoMatemática Aplicada
dc.description.abstractRiemannian and conformal geometry are classical topics of differential geometry. Even though both kinds of geometries are much related and have many common questions and features, they are very different in nature. In fact, conformal geometry is a special kind of parabolic geometry, i.e., a geometry of 2nd order. In my talk I will explain basic notions of conformal geometry from the viewpoint of parabolic geometry. Then I will feature some interesting topics and compare these with Riemannian geometry. In particular, I will discuss conformal holonomy and geodesics, and I will introduce a notion of conformal Einstein manifolds.es_ES
dc.description.sponsorshipUniversidad de Málaga. Campus de Excelencia Internacional Andalucía Teches_ES
dc.identifier.urihttp://hdl.handle.net/10630/7001
dc.language.isoenges_ES
dc.relation.eventdate27 de febrero de 2014es_ES
dc.relation.eventplaceEscuela Politénica Superior, Universidad de Málagaes_ES
dc.relation.eventtitleSeminario de Algebra y Geometríaes_ES
dc.rights.accessRightsopen access
dc.subjectGeometríaes_ES
dc.subject.otherDifferential geometryes_ES
dc.subject.otherConformal geometryes_ES
dc.titleConformal Geometry versus Riemannian Geometryes_ES
dc.typeconference outputes_ES
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
AbsMalaga.pdf
Size:
29.96 KB
Format:
Adobe Portable Document Format