Improving Hardware Transactional Memory Parallelization of Computational Geometry Algorithms Using Privatizing Transactions.

dc.centroE.T.S.I. Informáticaes_ES
dc.contributor.authorQuislant-del-Barrio, Ricardo
dc.contributor.authorGutiérrez-Carrasco, Eladio Damián
dc.contributor.authorLópez-Zapata, Emilio
dc.contributor.authorPlata-González, Óscar Guillermo
dc.date.accessioned2024-09-26T11:11:55Z
dc.date.available2024-09-26T11:11:55Z
dc.date.issued2019-05-06
dc.departamentoArquitectura de Computadores
dc.description.abstractHardware transactional memory is a new parallel programming paradigm supported by current commercial multiprocessors. This paradigm provides optimistic concurrency and overcomes some of the problems associated with classical lock-based synchronization, such as deadlock and serialization. Certain algorithms of computational geometry are found to be good candidates for parallelization with this paradigm. However, hardware transactional approaches to these algorithms lead to poor performance as the resulting transactions are too large for the underlying hardware to deal with. Large transactions overflow hardware resources serializing the execution. In this paper, we propose using privatizing transactions to parallelize two computational geometry algorithms: Lee’s algorithm, which solves the shortest-route problem, and Ruppert’s algorithm for Delaunay/Voronoi mesh refinement. Privatizing transactions are based on commercial hardware transactional memory extensions, and their goal is to reduce transaction footprint by means of a non-transactional private execution section. This results in effective smaller transactions. Our implementation is able to further reduce the transaction size as we propose a reduced validation set for privatizing transactions. Programming complexity of these implementations is discussed. Results show that our privatizing transaction implementations indeed enhance performance comparing with existing hardware transactional memory versions. Experiments with Intel’s transactional memory extensions yield speedups ranging from 2x to 3.5x with four threads.es_ES
dc.identifier.citationRicardo Quislant; Eladio Gutierrez; Emilio L. Zapata; Oscar Plata. Improving Hardware Transactional Memory Parallelization of Computational Geometry Algorithms Using Privatizing Transactions. Journal of Parallel and Distributed Computing. 131, pp. 103 - 119. 2019.es_ES
dc.identifier.doi10.1016/j.jpdc.2019.04.018
dc.identifier.urihttps://hdl.handle.net/10630/33456
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rights.accessRightsopen accesses_ES
dc.subjectHardwarees_ES
dc.subjectAlgoritmos computacionaleses_ES
dc.subject.otherComputational geometryes_ES
dc.subject.otherHardware transactional memoryes_ES
dc.subject.otherPrivatizing transactionses_ES
dc.subject.otherLee’s algorithmes_ES
dc.subject.otherRuppert’s algorithmes_ES
dc.subject.otherDelaunay triangulationes_ES
dc.titleImproving Hardware Transactional Memory Parallelization of Computational Geometry Algorithms Using Privatizing Transactions.es_ES
dc.typejournal articlees_ES
dc.type.hasVersionSMURes_ES
dspace.entity.typePublication
relation.isAuthorOfPublicationc6edf3ab-5134-4c07-943b-bfca90d13f34
relation.isAuthorOfPublicationf3eeec7d-5b4e-4ca9-abad-3cb620f46252
relation.isAuthorOfPublicatione83a2b03-3245-4584-8b56-96bfa63a7596
relation.isAuthorOfPublication34b85e22-88ce-4035-a53e-2bafb0c3310b
relation.isAuthorOfPublication.latestForDiscoveryc6edf3ab-5134-4c07-943b-bfca90d13f34

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
paper.pdf
Size:
842.3 KB
Format:
Adobe Portable Document Format
Description:

Collections