Experimental methods in chemical engineering: X-rayabsorption spectroscopy—XAS, XANES, EXAFS

dc.contributor.authorIglesias-Juez, Ana
dc.contributor.authorChiarello, Gian Luca
dc.contributor.authorPatience, Gregory
dc.contributor.authorGuerrero-Pérez, María Olga
dc.date.accessioned2022-05-09T12:11:51Z
dc.date.available2022-05-09T12:11:51Z
dc.date.issued2021-08-21
dc.departamentoIngeniería Química
dc.description.abstractAlthough X-ray absorption spectroscopy (XAS) was conceived in the early 20th century, it took 60 years after the advent of synchrotrons for researchers to exploit its tremendous potential. Counterintuitively, researchers are now developing bench type polychromatic X-ray sources that are less brilliant to measure catalyst stability and work with toxic substances. XAS measures the absorption spectra of electrons that X-rays eject from the tightly bound core electrons to the continuum. The spectrum from 10 to 150 eV (kinetic energy of the photoelectrons) above the chemical potential—binding energy of core electrons—identifies oxidation state and band occupancy (X-ray absorption near edge structure, XANES), while higher energies in the spectrum relate to local atomic structure like coordination number and distance, Debye-Waller factor, and inner potential correction (extended X-ray absorption fine structure, EXAFS). Combining XAS with complementary spectroscopic techniques like Raman, Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), and electron paramagnetic resonance (EPR) elucidates the nature of the chemical bonds at the catalyst surface to better understand reaction mechanisms and intermediates. Because synchrotrons continue to be the light source of choice for most researchers, the number of articles Web of Science indexes per year has grown from 1000 in 1991 to 1700 in 2020. Material scientists and physical chemists publish an order of magnitude articles more than chemical engineers. Based on a bibliometric analysis, the research comprises five clusters centred around: electronic and optical properties, oxidation and hydrogenation catalysis, complementary analytical techniques like FTIR, nanoparticles and electrocatalysis, and iron, metals, and complexes.es_ES
dc.description.sponsorshipThe authors acknowledge travel support from the Eras-mus+KA107 (2018-1-ES01-KA107-049563) and funding for the open access charge from the Universidad deMÁlaga/CBUA. This work was undertaken, in part,thanks to funding from the Canada Research Chairs pro-gram (950-231476).es_ES
dc.identifier.citationA. Iglesias-Juez, G.L. Chiarello, G. S. Patience, M. O. Guerrero-Pérez,Can. J. Chem. Eng.2022,100(1), 3.https://doi.org/10.1002/cjce.2429122es_ES
dc.identifier.doi10.1002/cjce.24291
dc.identifier.urihttps://hdl.handle.net/10630/24070
dc.language.isoenges_ES
dc.publisherWileyes_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectEspectroscopía de rayos Xes_ES
dc.subject.otherXAFSes_ES
dc.subject.otherOperandoes_ES
dc.subject.otherSynchrotrones_ES
dc.subject.otherXANESes_ES
dc.subject.otherXASes_ES
dc.titleExperimental methods in chemical engineering: X-rayabsorption spectroscopy—XAS, XANES, EXAFSes_ES
dc.typejournal articlees_ES
dc.type.hasVersionVoR
dc.type.hasVersionVoR
dspace.entity.typePublication
relation.isAuthorOfPublication9ce9de1c-4400-4a22-b2e4-c14cc35186a9
relation.isAuthorOfPublication.latestForDiscovery9ce9de1c-4400-4a22-b2e4-c14cc35186a9

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Can J Chem Eng - 2021 - Iglesias‐Juez - Experimental methods in chemical engineering X‐ray absorption spectroscopy XAS .pdf
Size:
5.13 MB
Format:
Adobe Portable Document Format
Description:

Collections