Engineering sub-wavelength silicon waveguides for sensing applications in the near-infrared and mid-infrared band

dc.centroE.T.S.I. Telecomunicaciónen_US
dc.contributor.authorWanguemert-Pérez, Juan Gonzalo
dc.contributor.authorSánchez-Postigo, Alejandro
dc.contributor.authorHadij-El-Houati, Abdelfettah
dc.contributor.authorLeuermann, Jonas
dc.contributor.authorPérez-Armenta, Carlos
dc.contributor.authorLuque-González, José Manuel
dc.contributor.authorOrtega-Moñux, Alejandro
dc.contributor.authorHalir, Robert
dc.contributor.authorMolina-Fernández, Íñigo
dc.contributor.authorCheben, Pavel
dc.contributor.authorXu, Dan-Xia
dc.contributor.authorSchmid, Jens H.
dc.contributor.authorCtyroky, Jiri
dc.contributor.authorSoler-Penades, Jordi
dc.contributor.authorNedeljkovic, Milos
dc.contributor.authorMashanovich, Goran Z.
dc.date.accessioned2019-02-08T12:45:04Z
dc.date.available2019-02-08T12:45:04Z
dc.date.created2019
dc.date.issued2019-02-08
dc.departamentoIngeniería de Comunicaciones
dc.description.abstractSilicon photonics is one of the most promising candidates to achieve lab-on-a-chip systems. Making use of the evanescent-field sensing principle, it is possible to determine the presence and concentration of substances by simply measuring the variation produced by the light- matter interaction with the real part of the mode effective index (in the near infrared band), or with its imaginary part in a specific range of wavelengths (in the mid-infrared band). Regardless of which is the operating wavelength range, to maximize the device sensitivity it is essential to select the proper sensing waveguide. In this work we will review the potential of diffractionless sub-wavelength grating waveguides (SWG) for sensing applications by demonstrating its powerful capability to engineer the spatial distribution of the mode profile, and thereby to maximize the light-matter interaction. Among other things, we will demonstrate that the SWG waveguide dimensions used until now in the near-infrared are not optimal for sensing applications. In the mid-infrared band, due to the unacceptable losses of silicon dioxide for wavelengths longer than 4 μm, an additional effort is required to provide a more convenient platform for the development of future applications. In this sense, we will also show our recent progresses in the development of a new platform, the suspended silicon waveguide with subwavelength metamaterial cladding. A complete set of elemental building blocks capable of covering the full transparency window of silicon (λ < ∼8.5 μm) will be discussed.en_US
dc.description.sponsorshipUniversidad de Málaga. Campus de Excelencia Internacional Andalucía Techen_US
dc.identifier.urihttps://hdl.handle.net/10630/17282
dc.language.isoengen_US
dc.relation.eventdate2-Febrero-2019en_US
dc.relation.eventplaceSan Francisco, EEUUen_US
dc.relation.eventtitlePhotonics West 2019en_US
dc.rights.accessRightsopen accessen_US
dc.subjectFotónicaen_US
dc.subject.otherSubwavelength grating waveguidesen_US
dc.subject.otherSensing waveguidesen_US
dc.subject.otherWaveguide sensitivityen_US
dc.subject.otherMid-infrared banden_US
dc.subject.otherSilicon photonicsen_US
dc.titleEngineering sub-wavelength silicon waveguides for sensing applications in the near-infrared and mid-infrared banden_US
dc.typeconference outputen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationf42b938c-89bf-44f4-a772-ca3f067618d4
relation.isAuthorOfPublication583629e8-cbf3-44b8-b366-038d9520c065
relation.isAuthorOfPublication6210de25-a7d8-4a18-bbef-f40541e329c4
relation.isAuthorOfPublicationf8516b4a-9f57-4d55-b3ff-3b4d35460a81
relation.isAuthorOfPublication.latestForDiscoveryf42b938c-89bf-44f4-a772-ca3f067618d4

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Abstract_PhotonicsWest_2019_GonzaloWanguemert_v3.pdf
Size:
53.08 KB
Format:
Adobe Portable Document Format
Description: