Variations, trends and forecast models for the airborne Olea europaea pollen season in Tétouan (NW of Morocco).

dc.centroFacultad de Cienciases_ES
dc.contributor.authorRaissouni, Ijlal 
dc.contributor.authorBoullayali, Asmaa
dc.contributor.authorRecio-Criado, María Marta
dc.contributor.authorBouziane, Hassan
dc.date.accessioned2024-11-27T07:56:12Z
dc.date.available2024-11-27T07:56:12Z
dc.date.created2024
dc.date.issued2024-09-05
dc.departamentoBotánica y Fisiología Vegetal
dc.descriptionhttps://openpolicyfinder.jisc.ac.uk/id/publication/8029es_ES
dc.description.abstractOlea europaea L. is an emblematic tree plantation of the Mediterranean basin and one of the main sources of allergenic pollen. In this study, we examined variations in airborne Olea pollen season, trends and built forecast models based on multiple regression analysis over a 13-year period (2008-2019, 2022) in NW of Morocco (Tétouan), focusing on start date of pollination (SDP), end date of pollination (EDP), peak date (PD), and pre-peak pollen Integral (PPI). Spearman’s correlation analysis highlighted the importance of different pre-season meteorological parameters on the features of Olea pollen season depending on the period considered. SDP became earlier with increasing minimum temperature in March, while EDP was mainly influenced by precipitation in February and PD is earlier with increasing maximum temperature and precipitation in February. Linear regression results indicated a trend toward a shorter pollination period, almost significant, by delaying SDP rather than earlier EDP, probably due to the significant decrease in minimum temperature between January and April. The best regression models predicted the characteristics of the Olea pollen season to within 2 days and a value close to the PPI at 45 pollen*day/m3, and achieved an accuracy between 58 and 95%.The strongest predictors when forecasting SDP, EDP, PD and PPI were minimum temperature in March, precipitation in April, maximum temperature in February and minimum temperature in November, respectively. Findings suggest that olive reproductive cycle is considerably dependent on pre-season meteorological parameters. Further performed statistical analysis should be made to improve traditional models using a long data series.es_ES
dc.identifier.citationRaissouni, I., Boullayali, A., Recio, M. et al. Variations, trends and forecast models for the airborne Olea europaea pollen season in Tétouan (NW of Morocco). Int J Biometeorol (2024). https://doi.org/10.1007/s00484-024-02772-9es_ES
dc.identifier.doi10.1007/s00484-024-02772-9
dc.identifier.urihttps://hdl.handle.net/10630/35336
dc.language.isoenges_ES
dc.publisherSpringer Naturees_ES
dc.rights.accessRightsopen accesses_ES
dc.subjectPolenes_ES
dc.subjectMicrobiología del airees_ES
dc.subjectOlivos - Polenes_ES
dc.subject.otherOlea europaea L.es_ES
dc.subject.otherPollenes_ES
dc.subject.otherForecasting modelses_ES
dc.subject.otherMeteorological parameterses_ES
dc.titleVariations, trends and forecast models for the airborne Olea europaea pollen season in Tétouan (NW of Morocco).es_ES
dc.typejournal articlees_ES
dc.type.hasVersionAMes_ES
dspace.entity.typePublication
relation.isAuthorOfPublication76cab825-eb2c-4be2-9851-77b168a11950
relation.isAuthorOfPublication.latestForDiscovery76cab825-eb2c-4be2-9851-77b168a11950

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Manuscript postprint IJB Olea Tetouan 2024.pdf
Size:
1.17 MB
Format:
Adobe Portable Document Format
Description:
Artículo aceptado (postprint)
Download

Description: Artículo aceptado (postprint)

Collections