Multi-objective consensus optimization for gene regulatory networks inference: A preference-based approach

dc.contributor.authorSegura Ortiz, Adrián
dc.contributor.authorNebro-Urbaneja, Antonio Jesús
dc.contributor.authorGarcía-Nieto, José Manuel
dc.contributor.authorAldana-Montes, José Francisco
dc.date.accessioned2025-12-16T12:51:06Z
dc.date.available2025-12-16T12:51:06Z
dc.date.issued2026
dc.departamentoCentro de investigación Ada Byrones_ES
dc.descriptionDisponible online 13 diciembre 2025es_ES
dc.description.abstractGene regulatory networks (GRNs) model key gene interactions, enabling the understanding of essential biological processes and their relationship with diseases. Inferring GRNs from expression data is fundamental in computational biology. However, existing methods exhibit limitations like domain biases and a lack of biological knowledge integration that affect their performance in in-vivo experimentation, particularly when several conflicting objectives are considered. To address these challenges, we propose a new approach that adopts a preference-guide selection mechanism aimed at helping the partitioner direct the search towards regions of high biological relevance by defining reference points in the objective space. This mechanism is integrated into MO-GENECI, a multi-objective evolutionary algorithm designed to optimize consensus between multiple machine learning techniques through biologically relevant objectives. Driven by research questions, the proposed approach is evaluated on 43 GRNs from benchmarks like DREAM3 and DREAM4, and real-world databases such as TFLink, using AUROC and AUPR metrics. The results demonstrate that the generated consensus networks obtained by using the preference selection outperform the original algorithm in quality and accuracy and reduce computational effort, especially in large networks. PBEvoGen achieved mean AUROC and AUPR values of 0.67 and 0.23 across 43 benchmark networks, improving the already state-of-the-art MO-GENECI by 1.2% and 4.3%, respectively. This combination of expert knowledge and evolutionary algorithms offers a robust, efficient methodology for GRN inference. The source code is hosted in a public repository at GitHub under MIT license: https://github.com/AdrianSeguraOrtiz/PBEvoGen. Moreover, to facilitate its installation and use, the software associated with this implementation has been encapsulated in a Python package available at PyPI: https://pypi.org/project/geneci/2.5.1es_ES
dc.description.sponsorshipFunding for open access charge: Universidad de Málaga / CBUAes_ES
dc.identifier.citationSegura-Ortiz, A., Nebro, A. J., García-Nieto, J., & Aldana-Montes, J. F. (2026). Multi-objective consensus optimization for gene regulatory networks inference: A preference-based approach. Computational Biology and Chemistry, 121, Article 108827. https://doi.org/10.1016/j.compbiolchem.2025.108827es_ES
dc.identifier.doi10.1016/j.compbiolchem.2025.108827
dc.identifier.urihttps://hdl.handle.net/10630/41140
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectBioinformáticaes_ES
dc.subjectRegulación genéticaes_ES
dc.subjectBiología computacionales_ES
dc.subjectAlgoritmos genéticoses_ES
dc.subject.otherBioinformaticses_ES
dc.subject.otherEvolutionary algorithmses_ES
dc.subject.otherGene regulatory networkses_ES
dc.subject.otherInferencees_ES
dc.subject.otherPreference-based selectiones_ES
dc.titleMulti-objective consensus optimization for gene regulatory networks inference: A preference-based approaches_ES
dc.typejournal articlees_ES
dc.type.hasVersionVoRes_ES
dspace.entity.typePublication
relation.isAuthorOfPublicationeddeb2e3-acaf-483e-bb13-cebb22c18413
relation.isAuthorOfPublication04a9ec70-bfda-4089-b4d7-c24dd0870d17
relation.isAuthorOfPublication7eac9d6a-0152-4268-8207-ea058c82e531
relation.isAuthorOfPublication.latestForDiscoveryeddeb2e3-acaf-483e-bb13-cebb22c18413

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Multi-objective consensus optimization for gene regulatory networks inference.pdf
Size:
2.2 MB
Format:
Adobe Portable Document Format
Description:

Collections