Hydration development and thermal performance of calcium sulphoaluminate cements containing microencapsulated phase change materials
Loading...
Identifiers
Publication date
Reading date
Collaborators
Advisors
Tutors
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Share
Center
Department/Institute
Keywords
Abstract
Microencapsulated phase change materials (MPCM) incorporated in buildings walls can reduce indoor temperature fluctuations, conserving energy and enhancing thermal comfort. MPCM were incorporated in calcium sulphoaluminate cement (CSA) at high concentrations to achieve a significant effect on the thermal properties. The cement hydration development was studied by isothermal calorimetry and laboratory X-ray powder diffraction (LXRPD). The hydration mechanism was not affected by the addition of MPCM. In order to obtain homogeneous mortars in the presence of MPCM, a superplasticizer (SP) was used. However, the SP causes a significant delay of the hydration. Although the mineralogical composition of the hydrated pastes did not change with the addition of MPCM, the mechanical strengths decrease dramatically. This decrease is well described by the Bolomey equation, assuming MPCMs act as air voids. This is a physical effect due to the high volume of MPCM, and not due to a change in the hydration chemistry.
Description
Publicado en: (Cement and Concrete Research 132 (2020) 106039)
Bibliographic citation
Collections
Endorsement
Review
Supplemented By
Referenced by
Creative Commons license
Except where otherwised noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional










