Goodness of Fit in the Marginal Modeling of Round-Trip Times for Networked Robot Sensor Transmissions.

dc.centroE.T.S.I. Informáticaes_ES
dc.contributor.authorFernández-Madrigal, Juan-Antonio
dc.contributor.authorArévalo-Espejo, Vicente Manuel
dc.contributor.authorCruz-Martín, Ana María
dc.contributor.authorGalindo-Andrades, Cipriano
dc.contributor.authorBañuls-Arias, Adrián
dc.contributor.authorGandarias Palacios, Juan Manuel
dc.date.accessioned2025-09-03T06:50:28Z
dc.date.available2025-09-03T06:50:28Z
dc.date.issued2025-09-02
dc.departamentoInstituto Universitario de Investigación en Ingeniería Mecatrónica y Sistemas Ciberfísicoses_ES
dc.description.abstractWhen complex computations cannot be performed on board a mobile robot, sensory data must be transmitted to a remote station to be processed, and the resulting actions must be sent back to the robot to execute, forming a repeating cycle. This involves stochastic round-trip times in the case of non-deterministic network communications and/or non-hard real-time software. Since robots need to react within strict time constraints, modeling these round-trip times becomes essential for many tasks. Modern approaches for modeling sequences of data are mostly based on time-series forecasting techniques, which impose a computational cost that may be prohibitive for real-time operation, do not consider all the delay sources existing in the sw/hw system, or do not work fully online, i.e., within the time of the current round-trip. Marginal probabilistic models, on the other hand, often have a lower cost, since they discard temporal dependencies between successive measurements of round-trip times, a suitable approximation when regime changes are properly handled given the typically stationary nature of these round-trip times. In this paper we focus on the hypothesis tests needed for marginal modeling of the round-trip times in remotely operated robotic systems with the presence of abrupt changes in regimes. We analyze in depth three common models, namely Log-logistic, Log-normal, and Exponential, and propose some modifications of parameter estimators for them and new thresholds for well-known goodness-of-fit tests, which are aimed at the particularities of our setting. We then evaluate our proposal on a dataset gathered from a variety of networked robot scenarios, both real and simulated; through >2100 h of high-performance computer processing, we assess the statistical robustness and practical suitability of these methods for these kinds of robotic applications.es_ES
dc.identifier.citationFernández-Madrigal, J.-A., Arévalo-Espejo, V., Cruz-Martín, A., Galindo-Andrades, C., Bañuls-Arias, A., & Gandarias-Palacios, J.-M. (2025). Goodness of Fit in the Marginal Modeling of Round-Trip Times for Networked Robot Sensor Transmissions. Sensors, 25(17), 5413. https://doi.org/10.3390/s25175413es_ES
dc.identifier.doi10.3390/s25175413
dc.identifier.urihttps://hdl.handle.net/10630/39737
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.relation.projectIDinfo://MICIU-AEI-ERDF/PEICTI/PID2023-147392NB-I00es_ES
dc.rightsAtribución-NoComercial-CompartirIgual 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectRobots autónomoses_ES
dc.subjectArquitectura dirigida por modeloses_ES
dc.subjectIngeniería del softwarees_ES
dc.subject.otherGoodness of fites_ES
dc.subject.otherHypothesis testes_ES
dc.subject.otherRound-trip times modelinges_ES
dc.subject.otherNetworked robotses_ES
dc.titleGoodness of Fit in the Marginal Modeling of Round-Trip Times for Networked Robot Sensor Transmissions.es_ES
dc.typejournal articlees_ES
dc.type.hasVersionVoRes_ES
dspace.entity.typePublication
relation.isAuthorOfPublicationcf1946c0-b96f-4a4a-b8da-88a0ee27182c
relation.isAuthorOfPublication20a90df2-406e-4323-bc8a-ebce8cd01d8d
relation.isAuthorOfPublication0225b160-54f3-4bd5-a28a-4522469436af
relation.isAuthorOfPublication.latestForDiscoverycf1946c0-b96f-4a4a-b8da-88a0ee27182c

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
paraCV sensors-25-05413.pdf
Size:
46.08 MB
Format:
Adobe Portable Document Format
Description:
Artículo principal
Download

Description: Artículo principal

Collections