Exhaustive biclustering driven by self-learning evolutionary approach for biomedical data

dc.contributor.authorSegura Ortiz, Adrián
dc.contributor.authorJosé-García, Adán
dc.contributor.authorJourdan, Laetitia
dc.contributor.authorGarcía-Nieto, José Manuel
dc.date.accessioned2025-06-05T11:38:00Z
dc.date.available2025-06-05T11:38:00Z
dc.date.issued2025-05-29
dc.departamentoLenguajes y Ciencias de la Computaciónes_ES
dc.description.abstractBackground and Objective: Biclustering is a key data analysis technique that identifies submatrices with coherent patterns, widely applied in biomedical fields such as gene co-expression analysis. Despite its importance, in the context of evolutionary algorithms, traditional partial representations in biclustering algorithms face significant limitations, such as redundancy and limited adaptability to domain-specific objectives. This study aims to overcome these challenges by introducing MOEBA-BIO, a new evolutionary biclustering framework for biomedical data. Methods: MOEBA-BIO is designed as a flexible framework based on the evolutionary metaheuristics scheme. It includes a self-configurator that dynamically adjusts the algorithm’s objectives and parameters based on contextual domain knowledge. The framework employs a complete representation, enabling the integration of new domain-specific objectives and the self-determination of the number of biclusters, addressing the limitations of traditional representations. The source code is available through the following git repository: https://github.com/AdrianSeguraOrtiz/MOEBA-BIO. Results: Experimental results demonstrate that MOEBA-BIO overcomes the limitations of classical partial representations. Furthermore, its application to simulated and real-world gene expression datasets highlights its ability to specialize in specific biological domains, improving accuracy and functional enrichment of biclusters compared to other state-of-the-art techniques. Conclusions: MOEBA-BIO represents a significant advancement in biclustering applied to bioinformatics. Its innovative framework, combining adaptability, self-configuration, and integration of domain-specific objectives, addresses the main limitations of traditional methods and offers robust solutions for complex biomedical datasets.es_ES
dc.description.sponsorshipFunding for open access charge: Universidad de Málaga / CBUAes_ES
dc.identifier.citationSegura-Ortiz, A., José-García, A., Jourdan, L., & García-Nieto, J. (2025). Exhaustive biclustering driven by self-learning evolutionary approach for biomedical data. Computer Methods and Programs in Biomedicine, 269, 108846. https://doi.org/10.1016/J.CMPB.2025.108846es_ES
dc.identifier.doi10.1016/j.cmpb.2025.108846
dc.identifier.issn0169-2607
dc.identifier.urihttps://hdl.handle.net/10630/38898
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectComputación evolutivaes_ES
dc.subjectBiomedicina - Investigaciónes_ES
dc.subjectBiomedicina - Innovaciones tecnológicases_ES
dc.subject.otherBiclusteringes_ES
dc.subject.otherEvolutionary algorithmes_ES
dc.subject.otherBiomedical domaines_ES
dc.subject.otherGene co-expressiones_ES
dc.subject.otherMulti-objectivees_ES
dc.subject.otherKnowledge injectiones_ES
dc.subject.otherParameter self-configurationes_ES
dc.titleExhaustive biclustering driven by self-learning evolutionary approach for biomedical dataes_ES
dc.typejournal articlees_ES
dc.type.hasVersionVoRes_ES
dspace.entity.typePublication
relation.isAuthorOfPublication04a9ec70-bfda-4089-b4d7-c24dd0870d17
relation.isAuthorOfPublication.latestForDiscovery04a9ec70-bfda-4089-b4d7-c24dd0870d17

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1-s2.0-S0169260725002639-main.pdf
Size:
3.78 MB
Format:
Adobe Portable Document Format
Description:

Collections