Exhaustive biclustering driven by self-learning evolutionary approach for biomedical data
| dc.contributor.author | Segura Ortiz, Adrián | |
| dc.contributor.author | José-García, Adán | |
| dc.contributor.author | Jourdan, Laetitia | |
| dc.contributor.author | García-Nieto, José Manuel | |
| dc.date.accessioned | 2025-06-05T11:38:00Z | |
| dc.date.available | 2025-06-05T11:38:00Z | |
| dc.date.issued | 2025-05-29 | |
| dc.departamento | Lenguajes y Ciencias de la Computación | es_ES |
| dc.description.abstract | Background and Objective: Biclustering is a key data analysis technique that identifies submatrices with coherent patterns, widely applied in biomedical fields such as gene co-expression analysis. Despite its importance, in the context of evolutionary algorithms, traditional partial representations in biclustering algorithms face significant limitations, such as redundancy and limited adaptability to domain-specific objectives. This study aims to overcome these challenges by introducing MOEBA-BIO, a new evolutionary biclustering framework for biomedical data. Methods: MOEBA-BIO is designed as a flexible framework based on the evolutionary metaheuristics scheme. It includes a self-configurator that dynamically adjusts the algorithm’s objectives and parameters based on contextual domain knowledge. The framework employs a complete representation, enabling the integration of new domain-specific objectives and the self-determination of the number of biclusters, addressing the limitations of traditional representations. The source code is available through the following git repository: https://github.com/AdrianSeguraOrtiz/MOEBA-BIO. Results: Experimental results demonstrate that MOEBA-BIO overcomes the limitations of classical partial representations. Furthermore, its application to simulated and real-world gene expression datasets highlights its ability to specialize in specific biological domains, improving accuracy and functional enrichment of biclusters compared to other state-of-the-art techniques. Conclusions: MOEBA-BIO represents a significant advancement in biclustering applied to bioinformatics. Its innovative framework, combining adaptability, self-configuration, and integration of domain-specific objectives, addresses the main limitations of traditional methods and offers robust solutions for complex biomedical datasets. | es_ES |
| dc.description.sponsorship | Funding for open access charge: Universidad de Málaga / CBUA | es_ES |
| dc.identifier.citation | Segura-Ortiz, A., José-García, A., Jourdan, L., & García-Nieto, J. (2025). Exhaustive biclustering driven by self-learning evolutionary approach for biomedical data. Computer Methods and Programs in Biomedicine, 269, 108846. https://doi.org/10.1016/J.CMPB.2025.108846 | es_ES |
| dc.identifier.doi | 10.1016/j.cmpb.2025.108846 | |
| dc.identifier.issn | 0169-2607 | |
| dc.identifier.uri | https://hdl.handle.net/10630/38898 | |
| dc.language.iso | eng | es_ES |
| dc.publisher | Elsevier | es_ES |
| dc.rights | Atribución 4.0 Internacional | * |
| dc.rights.accessRights | open access | es_ES |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
| dc.subject | Computación evolutiva | es_ES |
| dc.subject | Biomedicina - Investigación | es_ES |
| dc.subject | Biomedicina - Innovaciones tecnológicas | es_ES |
| dc.subject.other | Biclustering | es_ES |
| dc.subject.other | Evolutionary algorithm | es_ES |
| dc.subject.other | Biomedical domain | es_ES |
| dc.subject.other | Gene co-expression | es_ES |
| dc.subject.other | Multi-objective | es_ES |
| dc.subject.other | Knowledge injection | es_ES |
| dc.subject.other | Parameter self-configuration | es_ES |
| dc.title | Exhaustive biclustering driven by self-learning evolutionary approach for biomedical data | es_ES |
| dc.type | journal article | es_ES |
| dc.type.hasVersion | VoR | es_ES |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | 04a9ec70-bfda-4089-b4d7-c24dd0870d17 | |
| relation.isAuthorOfPublication.latestForDiscovery | 04a9ec70-bfda-4089-b4d7-c24dd0870d17 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 1-s2.0-S0169260725002639-main.pdf
- Size:
- 3.78 MB
- Format:
- Adobe Portable Document Format
- Description:

