Analysis of a public repository for the study of automatic fall detection algorithms

dc.centroE.T.S.I. Telecomunicaciónen_US
dc.contributor.authorCasilari-Pérez, Eduardo
dc.contributor.authorSantoyo-Ramón, José Antonio
dc.contributor.authorCano-García, José Manuel
dc.date.accessioned2018-07-31T11:08:20Z
dc.date.available2018-07-31T11:08:20Z
dc.date.created2018
dc.date.issued2018-07-31
dc.departamentoTecnología Electrónica
dc.description.abstractThe use of publicly available repositories containing movement traces of real or experimental subjects is a key aspect to define an evaluation framework that allows a systematic assessment of wearable fall detection systems. This papers presents a detailed analysis of a public dataset of traces which employed five sensing points to characterize the user’s mobility during the execution of ADLs (Activities of Daily Living) and emulated falls. The analysis is aimed at analysing two main factors: the importance of the election of the position of the sensor and the possible impact of the user’s personal features on the statistical characterization of the movements. Results reveal the importance of the nature of the ADL for the effectiveness of the discrimination of the falls.en_US
dc.description.sponsorshipUniversidad de Málaga. Campus de Excelencia Internacional Andalucía Tech.en_US
dc.identifier.urihttps://hdl.handle.net/10630/16389
dc.language.isospaen_US
dc.relation.eventdate20 de septiembre de 2018en_US
dc.relation.eventplaceBerlín, Alemaniaen_US
dc.relation.eventtitleiWOAR 2018 – 5th international Workshop on Sensor-based Activity Recognition and Interactionen_US
dc.rights.accessRightsopen accessen_US
dc.subjectSistemas de comunicaciones móvilesen_US
dc.subject.otherFall detection systemsen_US
dc.subject.otherAccelerometeren_US
dc.subject.otherGyroscopeen_US
dc.subject.otherSmartphoneen_US
dc.subject.otherWearableen_US
dc.subject.otherBluetoothen_US
dc.subject.otherDataseten_US
dc.subject.otherWireless sensorsen_US
dc.titleAnalysis of a public repository for the study of automatic fall detection algorithmsen_US
dc.typeconference outputen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationb00113ce-90f4-46b3-a2ba-507489e804c7
relation.isAuthorOfPublication17c03436-7833-4020-a4f3-2c89cacdc023
relation.isAuthorOfPublication.latestForDiscoveryb00113ce-90f4-46b3-a2ba-507489e804c7

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
iWOAR_casilari_ABSTRACT_RIUMA.pdf
Size:
193.8 KB
Format:
Adobe Portable Document Format
Description:
Artículo principal resumido
Download

Description: Artículo principal resumido