Generate more than one child in your co-evolutionary semi-supervised learning GAN.

dc.centroE.T.S.I. Informáticaes_ES
dc.contributor.authorSedeño Guerrero, Francisco José
dc.contributor.authorToutouh-el-Alamin, Jamal
dc.contributor.authorChicano-García, José-Francisco
dc.date.accessioned2025-04-28T08:51:05Z
dc.date.available2025-04-28T08:51:05Z
dc.date.issued2025-04
dc.departamentoInstituto de Tecnología e Ingeniería del Software de la Universidad de Málagaes_ES
dc.descriptionhttps://www.springernature.com/gp/open-science/policies/book-policieses_ES
dc.description.abstractGenerative Adversarial Networks (GANs) are very useful methods to address semi-supervised learning (SSL) datasets, thanks to their ability to generate samples similar to real data. This approach, called SSL-GAN has attracted many researchers in the last decade. Evolutionary algorithms have been used to guide the evolution and training of SSL-GANs with great success. In particular, several co-evolutionary approaches have been applied where the two networks of a GAN (the generator and the discriminator) are evolved in separate populations. The co-evolutionary approaches published to date assume some spatial structure of the populations, based on the ideas of cellular evolutionary algorithms. They also create one single individual per generation and follow a generational replacement strategy in the evolution. In this paper, we re-consider those algorithmic design decisions and propose a new co-evolutionary approach, called Co-evolutionary Elitist SSL-GAN (CE-SSLGAN), with panmictic population, elitist replacement, and more than one individual in the offspring. We evaluate the performance of our proposed method using three standard benchmark datasets. The results show that creating more than one offspring per population and using elitism improves the results in comparison with a classical SSL-GAN.es_ES
dc.description.sponsorshipThis work is partially funded by the Junta de Andalucia, Spain, under contract QUAL21 010UMA; and Universidad de Málaga under the grant B1-2022_18. We thankfully acknowledge the computer resources, technical expertise and as- sistance provided by the SCBI center of the University of Malaga.es_ES
dc.identifier.urihttps://hdl.handle.net/10630/38496
dc.language.isoenges_ES
dc.publisherSpringer Naturees_ES
dc.relation.eventdate23-25 de abril de 2025es_ES
dc.relation.eventplaceTrieste, Italiaes_ES
dc.relation.eventtitleInternational Conference on the Applications of Evolutionary Computationes_ES
dc.rights.accessRightsembargoed accesses_ES
dc.subjectRedes neuronales artificialeses_ES
dc.subjectAprendizaje automático (Inteligencia artificial)es_ES
dc.subject.otherGenerative adversarial networkes_ES
dc.subject.otherSemi-supervised learninges_ES
dc.subject.otherSSL-GANes_ES
dc.subject.otherEvolutionary machine learninges_ES
dc.subject.otherCo-evolutiones_ES
dc.titleGenerate more than one child in your co-evolutionary semi-supervised learning GAN.es_ES
dc.typeconference outputes_ES
dspace.entity.typePublication
relation.isAuthorOfPublicationa18a3827-4066-4bb2-9338-7e7510191857
relation.isAuthorOfPublication6f65e289-6502-4756-871c-dbe0ca9be545
relation.isAuthorOfPublication.latestForDiscoverya18a3827-4066-4bb2-9338-7e7510191857

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
SSL_GANs_Evostar_EML_2025.pdf
Size:
1.36 MB
Format:
Adobe Portable Document Format
Description:
Artículo principal
Download

Description: Artículo principal