Blood Cell Classification Using the Hough Transform and Convolutional Neural Networks

Loading...
Thumbnail Image

Identifiers

Publication date

Reading date

Collaborators

Advisors

Tutors

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Springer

Metrics

Google Scholar

Share

Research Projects

Organizational Units

Journal Issue

Abstract

The detection of red blood cells in blood samples can be crucial for the disease detection in its early stages. The use of image processing techniques can accelerate and improve the effectiveness and efficiency of this detection. In this work, the use of the Circle Hough transform for cell detection and artificial neural networks for their identification as a red blood cell is proposed. Specifically, the application of neural networks (MLP) as a standard classification technique with (MLP) is compared with new proposals related to deep learning such as convolutional neural networks (CNNs). The different experiments carried out reveal the high classification ratio and show promising results after the application of the CNNs.

Description

https://doi.org/10.1007/978-3-319-77712-2_62

Bibliographic citation

Endorsement

Review

Supplemented By

Referenced by