Tunable electrode architectures for La0.8Sr0.2Fe1-xTixO3-δ based Symmetrical Solid Oxide Fuel Cells.

Loading...
Thumbnail Image

Identifiers

Publication date

Reading date

Collaborators

Advisors

Tutors

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Metrics

Google Scholar

Share

Research Projects

Organizational Units

Journal Issue

Abstract

The efficiency of SOCF electrodes can be improved by optimizing the microstructure from alternative preparation methods, such as infiltration and nanostructured electrodes deposited at low temperature. Recent studies have demonstrated that spray-pyrolysis deposition is a versatile method to obtain nanostructured electrodes with improved performance in comparison with conventional electrodes prepared at high sintering temperatures. Among the different electrodes studied in the last few year, titanium-doped ferrites are one of the most promising because of their high redox stability and great electrochemical performance in both oxidizing and reducing conditions2,3. In this work, (La0.8Sr0.2)0.95Fe1-xTixO3-δ (x=0.2, 0.4) perovskites, hereafter labelled as LSFT02 and LSFT04, respectively, with different architectures were obtained by spray-pyrolysis deposition and they were tested as symmetrical electrodes for solid oxide fuel cell (SSOFC).

Description

Comunicación Oral

Bibliographic citation

Endorsement

Review

Supplemented By

Referenced by

Creative Commons license

Except where otherwised noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional