Study od the Tool Geometry Influence in Indentation for the Analysis and Validation of the New Modular Upper Bound Technique.

Loading...
Thumbnail Image

Identifiers

Publication date

Reading date

Collaborators

Advisors

Tutors

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI

Metrics

Google Scholar

Share

Research Projects

Organizational Units

Journal Issue

Abstract

Focusing on incremental bulk metal forming processes, the indentation process is gaining interest as a fundamental part of these kinds of processes. This paper presents the analysis of the pressure obtained in indentation under the influence of different punch geometries. To this end, an innovative Upper Bound Theorem (UBT) based solution is introduced. This new solution can be easily applied to estimate the necessary force that guarantees plastic deformation by an indentation process. In this work, we propose an accurate analytical approach to analyse indentation under different punches. The new Modular Upper Bound (MUB) method presents a simpler and faster application. Additionally, its complexity is not considerably increased by the addition of more Triangular Rigid Zones. In addition, a two-dimensional indentation model is designed and implemented using the Finite Element Method (FEM). The comparison of the two methods applied to the indentation process analysed—the new Modular Upper Bound technique and the Finite Element Method—reveal close similarities, the new Modular Upper Bound being more computationally efficient.

Description

Bibliographic citation

Bermudo, C.; Sevilla, L.; Martín, F.; Trujillo, F.J. Study of the Tool Geometry Influence in Indentation for the Analysis and Validation of the New Modular Upper Bound Technique. Appl. Sci. 2016, 6, 203. https://doi.org/10.3390/app6070203

Collections

Endorsement

Review

Supplemented By

Referenced by

Creative Commons license

Except where otherwised noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional