Generalized Cesàro operator acting on Hilbert spaces of analytic functions

dc.centroFacultad de Cienciases_ES
dc.contributor.authorMas, Alejandro
dc.contributor.authorMerchán-Álvarez, Noel
dc.contributor.authorDe la Rosa, Elena
dc.date.accessioned2024-05-16T06:51:21Z
dc.date.available2024-05-16T06:51:21Z
dc.date.issued2024-05-14
dc.departamentoÁlgebra, Geometría y Topología
dc.description.abstractLet D denote the unit disc in C. We define the generalized Cesàro operator as follows: Cω( f )(z) = 1 0 f (t z) 1 z z 0 Bω t (u) du ω(t)dt, where {Bω ζ }ζ∈D are the reproducing kernels of the Bergman space A2 ω induced by a radial weight ω in the unit disc D. We study the action of the operator Cω on weighted Hardy spaces of analytic functions Hγ , γ > 0 and on general weighted Bergman spaces A2 μes_ES
dc.description.sponsorshipFunding for open access charge: Universidad de Málaga/CBUAes_ES
dc.identifier.citationMas, A., Merchán, N. & de la Rosa, E. Generalized Cesàro operator acting on Hilbert spaces of analytic functions. Ann. Funct. Anal. 15, 56 (2024)es_ES
dc.identifier.doi10.1007/s43034-024-00365-6
dc.identifier.urihttps://hdl.handle.net/10630/31293
dc.language.isoenges_ES
dc.publisherSpringeres_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectFunciones analíticases_ES
dc.subject.otherCesàro operatores_ES
dc.subject.otherHilbert spaceses_ES
dc.subject.otherWeighted Bergman spaceses_ES
dc.subject.otherBergman reproducing kernel ·es_ES
dc.subject.otherRadial weightes_ES
dc.titleGeneralized Cesàro operator acting on Hilbert spaces of analytic functionses_ES
dc.typejournal articlees_ES
dc.type.hasVersionVoRes_ES
dspace.entity.typePublication
relation.isAuthorOfPublication702b63a6-e9ef-456c-abc1-e14bf3da3166
relation.isAuthorOfPublication.latestForDiscovery702b63a6-e9ef-456c-abc1-e14bf3da3166

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s43034-024-00365-6.pdf
Size:
473.61 KB
Format:
Adobe Portable Document Format
Description:

Collections