SAR Nets: An Evaluation of Semantic Segmentation Networks with Attention Mechanisms for Search and Rescue Scenes.
| dc.centro | Escuela de Ingenierías Industriales | es_ES |
| dc.contributor.author | Salas Espinales, Andrés | |
| dc.contributor.author | Vázquez-Martín, Ricardo | |
| dc.contributor.author | García-Cerezo, Alfonso José | |
| dc.contributor.author | Mandow, Anthony | |
| dc.date.accessioned | 2023-11-29T12:32:08Z | |
| dc.date.available | 2023-11-29T12:32:08Z | |
| dc.date.created | 2023 | |
| dc.date.issued | 2023 | |
| dc.departamento | Ingeniería de Sistemas y Automática | |
| dc.description.abstract | This paper evaluates four semantic segmentation models in Search-and-Rescue (SAR) scenarios obtained from ground vehicles. Two base models are used (U-Net and PSPNet) to compare different approaches to semantic segmentation, such as skip connections between encoder and decoder stages and using a pooling pyramid module. The best base model is modified by including two attention mechanisms to analyze their performance and computational cost. We conduct a quantitative and qualitative evaluation using our SAR dataset defining eleven classes in disaster scenarios. The results demonstrate that the attention mechanisms increase model performance while minimally affecting the computation time. | es_ES |
| dc.description.sponsorship | This work has been partially funded by the Spanish Ministerio de Ciencia, Innovación y Universidades, Gobierno de España, project PID2021-122944OB-I00. Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. | es_ES |
| dc.identifier.citation | Andrés Salas-Espinales, Ricardo Vázquez-Martı́n, Alfonso Garcı́a-Cerezo, and Anthony Mandow. SAR Nets: An Evaluation of Semantic Segmentation Networks with Attention Mechanisms for Search and Rescue Scenes. Proc. of the IEEE International Symposium on Safety, Security and Rescue Robotics (SSRR) 2023. Fukushima, Japan. | es_ES |
| dc.identifier.uri | https://hdl.handle.net/10630/28175 | |
| dc.language.iso | eng | es_ES |
| dc.relation.eventdate | 11/2023 | es_ES |
| dc.relation.eventplace | Fukushima, Japan. | es_ES |
| dc.relation.eventtitle | IEEE International Symposium on Safety, Security and Rescue Robotics (SSRR) 2023 | es_ES |
| dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
| dc.rights.accessRights | open access | es_ES |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
| dc.subject | Aprendizaje automático (Inteligencia artificial) | es_ES |
| dc.subject | Visión por ordenador | es_ES |
| dc.subject | Catástrofes | es_ES |
| dc.subject.other | Deep Learning | es_ES |
| dc.subject.other | Semantic Segmentation | es_ES |
| dc.subject.other | Attention Mechanism | es_ES |
| dc.subject.other | Disaster Robotics | es_ES |
| dc.title | SAR Nets: An Evaluation of Semantic Segmentation Networks with Attention Mechanisms for Search and Rescue Scenes. | es_ES |
| dc.type | conference output | es_ES |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | 14beb91d-691d-46e6-b1fc-aa7eddbc04ee | |
| relation.isAuthorOfPublication | 111d26c1-efd3-4b8a-a05b-420a796580e0 | |
| relation.isAuthorOfPublication | 5f0a1dda-1e55-4bcd-b78a-7af23b346a79 | |
| relation.isAuthorOfPublication.latestForDiscovery | 14beb91d-691d-46e6-b1fc-aa7eddbc04ee |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- SARNet__Semantic_Segmentation_Network_with_Attention_Mechanisms_for_Search_and_Rescue_Scenes_AcceptedVersion.pdf
- Size:
- 462.15 KB
- Format:
- Adobe Portable Document Format
- Description:
- Artículo principal
Description: Artículo principal

