SAR Nets: An Evaluation of Semantic Segmentation Networks with Attention Mechanisms for Search and Rescue Scenes.

dc.centroEscuela de Ingenierías Industrialeses_ES
dc.contributor.authorSalas Espinales, Andrés
dc.contributor.authorVázquez-Martín, Ricardo
dc.contributor.authorGarcía-Cerezo, Alfonso José
dc.contributor.authorMandow, Anthony
dc.date.accessioned2023-11-29T12:32:08Z
dc.date.available2023-11-29T12:32:08Z
dc.date.created2023
dc.date.issued2023
dc.departamentoIngeniería de Sistemas y Automática
dc.description.abstractThis paper evaluates four semantic segmentation models in Search-and-Rescue (SAR) scenarios obtained from ground vehicles. Two base models are used (U-Net and PSPNet) to compare different approaches to semantic segmentation, such as skip connections between encoder and decoder stages and using a pooling pyramid module. The best base model is modified by including two attention mechanisms to analyze their performance and computational cost. We conduct a quantitative and qualitative evaluation using our SAR dataset defining eleven classes in disaster scenarios. The results demonstrate that the attention mechanisms increase model performance while minimally affecting the computation time.es_ES
dc.description.sponsorshipThis work has been partially funded by the Spanish Ministerio de Ciencia, Innovación y Universidades, Gobierno de España, project PID2021-122944OB-I00. Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech.es_ES
dc.identifier.citationAndrés Salas-Espinales, Ricardo Vázquez-Martı́n, Alfonso Garcı́a-Cerezo, and Anthony Mandow. SAR Nets: An Evaluation of Semantic Segmentation Networks with Attention Mechanisms for Search and Rescue Scenes. Proc. of the IEEE International Symposium on Safety, Security and Rescue Robotics (SSRR) 2023. Fukushima, Japan.es_ES
dc.identifier.urihttps://hdl.handle.net/10630/28175
dc.language.isoenges_ES
dc.relation.eventdate11/2023es_ES
dc.relation.eventplaceFukushima, Japan.es_ES
dc.relation.eventtitleIEEE International Symposium on Safety, Security and Rescue Robotics (SSRR) 2023es_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectAprendizaje automático (Inteligencia artificial)es_ES
dc.subjectVisión por ordenadores_ES
dc.subjectCatástrofeses_ES
dc.subject.otherDeep Learninges_ES
dc.subject.otherSemantic Segmentationes_ES
dc.subject.otherAttention Mechanismes_ES
dc.subject.otherDisaster Roboticses_ES
dc.titleSAR Nets: An Evaluation of Semantic Segmentation Networks with Attention Mechanisms for Search and Rescue Scenes.es_ES
dc.typeconference outputes_ES
dspace.entity.typePublication
relation.isAuthorOfPublication14beb91d-691d-46e6-b1fc-aa7eddbc04ee
relation.isAuthorOfPublication111d26c1-efd3-4b8a-a05b-420a796580e0
relation.isAuthorOfPublication5f0a1dda-1e55-4bcd-b78a-7af23b346a79
relation.isAuthorOfPublication.latestForDiscovery14beb91d-691d-46e6-b1fc-aa7eddbc04ee

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
SARNet__Semantic_Segmentation_Network_with_Attention_Mechanisms_for_Search_and_Rescue_Scenes_AcceptedVersion.pdf
Size:
462.15 KB
Format:
Adobe Portable Document Format
Description:
Artículo principal
Download

Description: Artículo principal