Data-driven distributionally robust optimization with Wasserstein metric, moment conditions and robust constraints

dc.centroEscuela de Ingenierías Industrialesen_US
dc.contributor.authorEsteban-Pérez, Adrián
dc.contributor.authorMorales-González, Juan Miguel
dc.date.accessioned2018-07-12T10:27:03Z
dc.date.available2018-07-12T10:27:03Z
dc.date.created2018-07-11
dc.date.issued2018-07-12
dc.departamentoMatemática Aplicada
dc.description.abstractWe consider optimization problems where the information on the uncertain parameters reduces to a finite data sample. Using the Wasserstein metric, a ball in the space of probability distributions centered at the empirical distribution is constructed. The goal is to solve a minimization problem subject to the worst-case distribution within this Wasserstein ball. Moreover, we consider moment constraints in order to add a priori information about the random phenomena. In addition, we not only consider moment constraints but also take into account robust classical constraints. These constraints serve to hedge decisions against realizations of random variables for which we do not have distributional information other than their support set. With these assumptions we need to solve a data-driven distributionally robust optimization problem with several types of constraints. We show that strong duality holds under mild assumptions, and the distributionally robust optimization problems overWasserstein balls with moment constraints and robust classical constraints can in fact be reformulated as tractable finite programs. Finally, a taxonomy of the tractable finite programs is shown under di erent assumptions about the objective function, the constraints and the support set of the random variables.en_US
dc.description.sponsorshipEuropean Research Council University of Málaga. Campus de Excelencia Internacional Andalucía Tech.en_US
dc.identifier.urihttps://hdl.handle.net/10630/16206
dc.language.isoengen_US
dc.relation.eventdate8 de julio de 2018en_US
dc.relation.eventplaceValencia, Spainen_US
dc.relation.eventtitle29th European Conference on Operational Researchen_US
dc.rights.accessRightsopen accessen_US
dc.subjectMatemáticas aplicadas - Congresosen_US
dc.subject.otherDistributionally robust optimizationen_US
dc.subject.otherWasserstein metricen_US
dc.subject.otherAmbiguityen_US
dc.titleData-driven distributionally robust optimization with Wasserstein metric, moment conditions and robust constraintsen_US
dc.typeconference outputen_US
dspace.entity.typePublication
relation.isAuthorOfPublication21d3b665-5e30-48ed-83c0-c14b65100f6c
relation.isAuthorOfPublication.latestForDiscovery21d3b665-5e30-48ed-83c0-c14b65100f6c

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
euro2018_DRO_Esteban&Morales.pdf
Size:
1.18 MB
Format:
Adobe Portable Document Format
Description:
Presentación
Download

Description: Presentación